Browse Topic: Human Factors and Ergonomics

Items (8,480)
Abstract Test cycle simulation is an essential part of the vehicle-in-the-loop test, and the deep reinforcement learning algorithm model is able to accurately control the drastic change of speed during the simulated vehicle driving process. In order to conduct a simulated cycle test of the vehicle, a vehicle model including driver, battery, motor, transmission system, and vehicle dynamics is established in MATLAB/Simulink. Additionally, a bench load simulation system based on the speed-tracking algorithm of the forward model is established. Taking the driver model action as input and the vehicle gas/brake pedal opening as the action space, the deep deterministic policy gradient (DDPG) algorithm is used to update the entire model. This process yields the dynamic response of the output end of the bench model, ultimately producing the optimal intelligent driver model to simulate the vehicle’s completion of the World Light Vehicle Test Cycle (WLTC) on the bench. The results indicate that
Gong, XiaohaoLi, XuHu, XiongLi, Wenli
Items per page:
1 – 50 of 8480