Browse Topic: Human machine interface (HMI)

Items (657)
Following a number of high-visibility collisions between aircraft on the airport surface, overall taxi operations have been brought under greater scrutiny. In addition, observation of taxi operations and the results of associated research programs have revealed that the efficiency of taxi operations could be significantly improved with available technologies and by applying a human centered design approach. Surface operations displays have been tested in prototype form and a number of manufacturers are moving toward product definition. This document provides guidance on the design of elements, which may be part of surface operations displays whose objectives would be to enhance safety and to improve overall efficiency of aircraft operations on the airport surface. Such efficiency increases should be realized not only in day-to-day operations, but should also be manifested in training for surface operations. This document sets forth functional and design recommendations concerning the
G-10 Executive Advisory Group
This SAE EDGE™ Research Report builds a comprehensive picture of the current state-of-the-art of human-robot applications, identifying key issues to unlock the technology’s potential. It brings together views of recognized thought leaders to understand and deconstruct the myths and realities of human- robot collaboration, and how it could eventually have the impact envisaged by many.Current thinking suggests that the emerging technology of human-robot collaboration provides an ideal solution, combining the flexibility and skill of human operators with the precision, repeatability, and reliability of robots. Yet, the topic tends to generate intense reactions ranging from a “brave new future” for aircraft manufacturing and assembly, to workers living in fear of a robot invasion and lost jobs.It is widely acknowledged that the application of robotics and automation in aerospace manufacturing is significantly lower than might be expected. Reasons include product variability, size, design
Webb, PhilipFletcher, Sarah
We are living in a digitally integrated and connected world. Evidenced by the use of smartphones, smartwatches, and other smart devices, there is no ending this trend. This holds true across many industries and applications, but is especially prevalent within medtech devices — a market that’s predicted to reach $432.6 billion by 2025.1
Over the years, technological innovation has allowed the medical equipment sector to become a mission-critical part of the healthcare industry, delivering such benefits as lower operating costs and improved patient outcomes. But competitive pressures are driving the need for device developers to provide a richer experience for users, incorporating broader capabilities and features and more options.
This Information Report provides recommendations for alphanumeric messages that are supplied to the vehicle by external (e.g., RDS, satellite radio) or internal (e.g., infotainment system) sources while the vehicle is in-motion. Information/design recommendations contained in this report apply to OEM (embedded) and aftermarket systems. Ergonomic issues with regard to display characteristics (e.g., viewing angle, brightness, contrast, font design, etc.) should review ISO 15008.
Driver Vehicle Interface (DVI) Committee
Items per page:
1 – 50 of 657