In recent years, climate change and geopolitical instability have intensified the focus on sustainable power generation. This shift seeks alternatives that balance environmental impact, cost-effectiveness, and practicality. Specifically, in transportation and power generation, electric motors face challenges against internal combustion engines due to the high cost and mass of batteries required for energy storage. This makes electric solutions less favorable for these sectors. Conversely, internal combustion engines, when properly fueled, offer cost-effectiveness and a quasi-environmentally-neutral option. To address these challenges, researchers have explored e-fuels derived from renewable sources as a carbon-neutral supply for internal combustion engines. Among these, hydrogen is particularly promising. In hydrogen-powered internal combustion engines, 3D-CFD (Computational Fluid Dynamics) in-cylinder models are crucial. Once validated, these models can speed up the design process. A