Electrification calls for a range of system components, that need to be developed and tested. On one hand, these system components include hardware components, like battery cells, modules, and packs, and battery management systems (BMS). On the other hand, software components are used for testing, e.g. algorithms for BMS or simulation models for batteries. Execution of tests on real batteries is typically time- and cost-intense, and includes considerable risks, leading to safety hazards. In this paper, we introduce a novel development and test approach for battery systems, that is driven by a unified, standardized interface between hardware- and software components and physical devices alike. Whereas established Hardware-in-the-Loop (HiL) systems are built on proprietary systems and environments, our approach is based on both open-source and industrial simulation software solutions. The Distributed Co-Simulation Protocol (DCP) is used to encapsulate and virtualize these components, as