Browse Topic: Suspension systems

Items (1,968)
Ground vibration testing (GVT) is an important phase of the development, or the structural modification of an aircraft program. The modes of vibration and their associated parameters extracted from the GVT are used to modify the structural model of the aircraft to make more reliable dynamics predictions to satisfy certification authorities. Due to the high cost and the extensive preparations for such tests, a new method of vibration testing called taxi vibration testing (TVT) rooted in operational modal analysis (OMA) was recently proposed and investigated by the German Institute for Aerospace Research (DLR) as alternative to conventional GVT. In this investigation, a computational framework based on fully coupled flexible multibody dynamics for TVT is presented to further investigate the applicability of the TVT to flexible airframes. The time domain decomposition (TDD) method for OMA was used to postprocess the response of the airframe during a TVT. The framework was then used to
Al-bess, LohayKhouli, Fidel
Active suspensions can alter the dynamic behavior of a vehicle in real time to respond optimally to any given operating scenario. Today’s active suspension technologies such as hydraulics, rotary electromagnetics, and linear electromagnetics do offer performance gains but these gains are outweighed by important disadvantages including high power consumption, low quality of force, and high costs and weights. Controlled slippage magnetorheological (MR) actuators are an emerging alternative actuation technology that is light, compact, power dense, and produces a high-quality force, making it ideal for active suspension applications. This article conducts an in-depth experimental assessment of the potential of MR actuators to increase vehicle ride comfort quality when used as active suspensions. Four high power MR actuators are installed on a BMW 330Ci and tests are performed on a closed road. Results show that with an impedance controller, comfort is increased by 67% at 65 km/h and by 61
Turcotte, JérômeEast, WilliamPlante, Jean-Sébastien
This SAE Aerospace Standard (AS) provides standardized gland (groove) design criteria and dimensions for O-ring seal glands for static and dynamic applications, and other seals.
A-6C2 Seals Committee
Items per page:
1 – 50 of 1968