Browse Topic: Aircraft instruments

Items (490)
The hippocampus plays a crucial role in brain function and is one of the important areas of concern in closed head injury. Hippocampal injury is related to a variety of factors including the strength of mechanical load, animal age, and helmet material. To investigate the order of these factors on hippocampal injury, a three-factor, three-level experimental protocol was established using the L(3) orthogonal table. A closed head injury experiment regarding impact strength (0.3MPa, 0.5MPa, 0.7MPa), rat age (eight- week-old, ten-week-old, twelve-week-old), and helmet material (steel, plastic, rubber) were achieved by striking the rat's head with a pneumatic-driven impactor. The number of hippocampal CA3 cells was used as an evaluation indicator. The contribution of factors to the indicators and the confidence level were obtained by analysis of variance. The results showed that impact strength was the main factor affecting hippocampal injury (contribution of 89.2%, confidence level 0.01
Wang, PengSong, XueweiZhu, XiyanQiu, JinlongYang, ShuaijunZhao, Hui
This document considers the cooling of equipment installed in equipment centers, which usually consist of rack-mounted equipment and panel mounted equipment in the flight deck. Instances where these two locations result in different requirements are identified. This document generally refers to the cooled equipment as E/E equipment, denoting that both electrical and electronic equipment is considered, or as an E/E equipment line-replaceable-unit (LRU). The majority of cooled equipment takes the form of LRUs. The primary focus of this document is E/E equipment which uses forced air cooling to keep the equipment within acceptable environmental limits. These limits ensure the equipment operates reliably and within acceptable tolerances. Cooling may be supplied internally or externally to the E/E equipment case. Some E/E equipment is cooled solely by natural convection, conduction, and radiation to the surrounding environment. This document discusses specification requirements, system
AC-9 Aircraft Environmental Systems Committee
This SAE Aerospace Standard (AS) covers automatic pilots intended for use on aircraft to automatically operate the primary and trim aerodynamic controls to maintain stable flight and/or to provide maneuvering about any of the three axes through servo control. Automatic control functions essential for primary or augmented flight control are excluded.
A-4 Aircraft Instruments Committee
This Aerospace Standard covers Flight Director Equipments which display to the pilot a computed command for the operation of an aircraft in accordance with selected Mode(s). The term “Equipment” may include controls, displays, computers, etc. and may include sensors if furnished as a part of the Flight Director.
A-4 Aircraft Instruments Committee
This SAE Aerospace Standard (AS) covers one type of maximum-allowable-airspeed instrument which gives a continuous indication of both indicated airspeed and maximum allowable airspeed not exceeding 650 knots.
A-4 Aircraft Instruments Committee
This Aerospace Standard covers two basic Stall Warning Systems, one measures air flow and pressure distribution on the airfoil and the other measures the angle of airflow with respect to an arbitrary reference line. Each type of system includes, as a minimum, a sensor and the means for activating a device which warns the pilot of an impending stall.
A-4 Aircraft Instruments Committee
A recommended pilot-system integration (i.e., crew interface and system integration) approach for concept development is described in Figure 1. The approach emphasizes the fundamental need for a top-down design methodology with particular focus on clear operational performance requirements and functional integration. While this document is primarily aimed at aircraft systems design and integration, the methodology is applicable to a wide range of design and integration situations. It is derived from well established human factors engineering design principles.
G-10 Executive Advisory Group
The recommended design approach is described in Figure 1. The approach emphasizes the fundamental relationship between symbols, the information they encode, the context within which the symbols are displayed, and the tasks being supported. While this document is aimed at aircraft displays involving dynamic control or monitoring tasks, the methodology is applicable to a wide range of symbology development situations.
G-10 Executive Advisory Group
In the aerospace industry, competition is high and the need to ensure safety and security while managing costs is paramount. Furthermore, stakeholders—who gain the most by working together—do not necessarily trust each other. Now, mix that with changing enterprise technologies, management of historical records, and customized legacy systems. This issue touches all aspects of the aerospace industry, from frequent flyer miles to aircraft maintenance and drives tremendous inefficiency and cost.Technology that augments, rather than replaces, is needed to transform these complex systems into efficient, digital processes. Blockchain technology offers collaborative opportunities for solving some of the data problems that have long challenged the industry.This SAE EDGE™ Research Report by Rhonda D. Walthall examines how blockchain technology could impact the aerospace industry and addresses some of the unsettled concerns surrounding its implementation.{"uri":[{"xlink:href":"https://www.sae.org
Walthall, Rhonda
This SAE Aerospace Recommended Practice (ARP) provides recommendations for design and test requirements for a generic “passive” side stick that could be used for fly-by wire transport and business aircraft. It addresses the following: The functions to be implemented The geometric and mechanical characteristics The mechanical and electrical interfaces The safety and certification requirements
A-6A3 Flight Control and Vehicle Management Systems Cmt
This recommended practice covers the requirements for gyroscopically stabilized Directional Indicating Systems, which will operate as a 1°/hour latitude corrected, free directional gyro or as a slaved gyro, magnetic compass with 1/2° accuracy.
A-4 Aircraft Instruments Committee
This SAE Aerospace Recommended Practice (ARP) provides performance criteria for Altitude Alerting Devices and Systems. These devices can be self-contained or receive remote altitude information and can have integral or remote barometric corrections. Only the generation of the alerting signals is covered by this recommended practice and not the details of the visual or audio alerts operated by these signals. It is recommended that the system’s operational correspondence between the selected altitude settings of the Altitude Alerting Device and the Altitude Level Indication normally used to control the aircraft should not exceed ±250 ft RSS throughout the operating range of the device.
A-4 Aircraft Instruments Committee
Items per page:
1 – 50 of 490