Browse Topic: Avionics

Items (1,853)
Abstract In autonomous technology, uncrewed aircraft systems have already become the preferred platform for the research and development of flight control systems. Although they are subjected to following and satisfying complicated scenarios of control stations, this high dependency on a specific control framework limits them in their application process and reduces the flight self-organizing network. In this article, we present a developed multilayer control system protocol with the additional supportive manned aircraft layer (Tender). The novelty of the introduced model is that uncrewed aircraft systems are monitored and navigated by the tender, and then based on the suggested scheme, data flows are controlled and transferred across the network by the developed cloud–robotics approach in the ground station layer. Therefore, it has been tried to design a semi-autonomous control network to gather data that combines human observation and the automotive nature of uncrewed aircraft
Millar, Richard C.Laliberté, JeremyMahmoodi, ArminHashemi, LeilaMeyer, Robert Walter
This work introduces a practical approach to external synchronization for flight control computers (FCCs) deployed in a decentralized fashion. The internal synchronization among the FCCs in distributed flight control systems needs to be extended for specific applications, necessitating an urgent need for an external synchronization mechanism. For instance, when the air data and attitude reference system (ADAHRS) and the flight control computer (FCC) are not synchronized, a dead time or time offset occurs between the time the ADAHRS transmits data and the time the FCC begins executing its control functions, which can impair flight control system performance or even cause system instability, particularly for the system with incremental control approaches, such as incremental nonlinear dynamic inversion (INDI). Therefore, an external synchronization technique that does not rely on establishing a global view of time that is accurately synchronized with an external reference device has been
Khozin, MokhamadHolzapfel, Florian
The hippocampus plays a crucial role in brain function and is one of the important areas of concern in closed head injury. Hippocampal injury is related to a variety of factors including the strength of mechanical load, animal age, and helmet material. To investigate the order of these factors on hippocampal injury, a three-factor, three-level experimental protocol was established using the L(3) orthogonal table. A closed head injury experiment regarding impact strength (0.3MPa, 0.5MPa, 0.7MPa), rat age (eight- week-old, ten-week-old, twelve-week-old), and helmet material (steel, plastic, rubber) were achieved by striking the rat's head with a pneumatic-driven impactor. The number of hippocampal CA3 cells was used as an evaluation indicator. The contribution of factors to the indicators and the confidence level were obtained by analysis of variance. The results showed that impact strength was the main factor affecting hippocampal injury (contribution of 89.2%, confidence level 0.01
Wang, PengSong, XueweiZhu, XiyanQiu, JinlongYang, ShuaijunZhao, Hui
This document considers the cooling of equipment installed in equipment centers, which usually consist of rack-mounted equipment and panel mounted equipment in the flight deck. Instances where these two locations result in different requirements are identified. This document generally refers to the cooled equipment as E/E equipment, denoting that both electrical and electronic equipment is considered, or as an E/E equipment line-replaceable-unit (LRU). The majority of cooled equipment takes the form of LRUs. The primary focus of this document is E/E equipment which uses forced air cooling to keep the equipment within acceptable environmental limits. These limits ensure the equipment operates reliably and within acceptable tolerances. Cooling may be supplied internally or externally to the E/E equipment case. Some E/E equipment is cooled solely by natural convection, conduction, and radiation to the surrounding environment. This document discusses specification requirements, system
AC-9 Aircraft Environmental Systems Committee
This SAE Aerospace Standard (AS) provides a system of graphic symbols and line codings that are intended primarily for usage in hydraulic and pneumatic system schematic diagrams for all types of aircraft.
A-6 Aerospace Actuation, Control and Fluid Power Systems
This SAE Aerospace Standard (AS) covers automatic pilots intended for use on aircraft to automatically operate the primary and trim aerodynamic controls to maintain stable flight and/or to provide maneuvering about any of the three axes through servo control. Automatic control functions essential for primary or augmented flight control are excluded.
A-4 Aircraft Instruments Committee
This Aerospace Standard covers Flight Director Equipments which display to the pilot a computed command for the operation of an aircraft in accordance with selected Mode(s). The term “Equipment” may include controls, displays, computers, etc. and may include sensors if furnished as a part of the Flight Director.
A-4 Aircraft Instruments Committee
This SAE Aerospace Standard (AS) covers one type of maximum-allowable-airspeed instrument which gives a continuous indication of both indicated airspeed and maximum allowable airspeed not exceeding 650 knots.
A-4 Aircraft Instruments Committee
This Aerospace Standard covers two basic Stall Warning Systems, one measures air flow and pressure distribution on the airfoil and the other measures the angle of airflow with respect to an arbitrary reference line. Each type of system includes, as a minimum, a sensor and the means for activating a device which warns the pilot of an impending stall.
A-4 Aircraft Instruments Committee
This SAE Aerospace Recommended Practice (ARP) covers the test procedures and equipment for performing flight testing on pitot-static systems installed in subsonic transport type aircraft.
A-4 Aircraft Instruments Committee
A recommended pilot-system integration (i.e., crew interface and system integration) approach for concept development is described in Figure 1. The approach emphasizes the fundamental need for a top-down design methodology with particular focus on clear operational performance requirements and functional integration. While this document is primarily aimed at aircraft systems design and integration, the methodology is applicable to a wide range of design and integration situations. It is derived from well established human factors engineering design principles.
G-10 Executive Advisory Group
The recommended design approach is described in Figure 1. The approach emphasizes the fundamental relationship between symbols, the information they encode, the context within which the symbols are displayed, and the tasks being supported. While this document is aimed at aircraft displays involving dynamic control or monitoring tasks, the methodology is applicable to a wide range of symbology development situations.
G-10 Executive Advisory Group
This document sets forth general, functional, procedural, and design criteria and recommendations concerning human engineering of data link systems. The recommendations are based on limited evidence from empirical and analytic studies of simulated data link communication, and on experience from operational tests and actual use of data link. However, because data are not yet available to support recommendations on all potentially critical human engineering issues these recommendations necessarily go beyond the data link research and include requirements based on related research and human factors engineering practice. It is also recognized that evolution of these recommendations will be appropriate as experience with data link accumulates and new applications are implemented. This document focuses primarily on recommendations for data link communications between an air traffic specialist and a pilot, i.e., air traffic services communications, although some recommendations address use of
G-10 Executive Advisory Group
In the aerospace industry, competition is high and the need to ensure safety and security while managing costs is paramount. Furthermore, stakeholders—who gain the most by working together—do not necessarily trust each other. Now, mix that with changing enterprise technologies, management of historical records, and customized legacy systems. This issue touches all aspects of the aerospace industry, from frequent flyer miles to aircraft maintenance and drives tremendous inefficiency and cost.Technology that augments, rather than replaces, is needed to transform these complex systems into efficient, digital processes. Blockchain technology offers collaborative opportunities for solving some of the data problems that have long challenged the industry.This SAE EDGE™ Research Report by Rhonda D. Walthall examines how blockchain technology could impact the aerospace industry and addresses some of the unsettled concerns surrounding its implementation.{"uri":[{"xlink:href":"https://www.sae.org
Walthall, Rhonda
This study provides a simulation-based comparative analysis of the distance and time needed for long combination vehicles (LCVs) - namely, A-doubles with 28-, 33-, and 48-ft trailers - to safely exercise an emergency, evasive steering maneuver such as required for obstacle avoidance. The results are also compared with conventional tractor-semitrailers with a single 53-ft trailer. A multi-body dynamic model for each vehicle combination is developed in TruckSim® with an attempt to assess the last point to steer (LPTS) and evasive time (ET) at various highway speeds under both dry and wet road conditions. The results indicate that the minimum avoidance distance and time required for the 28-ft doubles vary from 206 ft (60 mph) to 312 ft (80 mph) and 2.3 s to 2.6 s, respectively. The required LPTS represents a 6% to 31% increase when compared with 53-ft semitrucks. When driving below 76 mph on a dry road and below 75 mph on a wet road, the 28-ft doubles exhibit LPTS and ET that are larger
Chen, YangZhang, ZichenAhmadian, Mehdi
This SAE Aerospace Standard (AS) covers air data computer equipment (hereinafter designated the computer) which when connected to sources of aircraft electrical power, static pressure, total pressure, outside air temperature, and others specified by the manufacturer (singly or in combination) provides some or all of the following computed air data output signals (in analog and/or digital form) which may supply primary and/or standby flight instruments: Pressure Altitude Pressure Altitude, Baro-Corrected Vertical Speed Calibrated Airspeed Mach Number Maximum Allowable Airspeed Over-speed Warning Total Air Temperature
A-4 Air Data Subcommittee
Items per page:
1 – 50 of 1853