Browse Topic: Flight control systems

Items (1,013)
This SAE Aerospace Information Report (AIR) provides methodologies and approaches that have been used to install and integrate full-authority-digital-engine-control (FADEC) systems on transport category aircraft. Although most of the information provided is based on turbofan engines installed on large commercial transports, many of the issues raised are equally applicable to corporate, general aviation, regional and commuter aircraft, and to military installations, particularly when commercial aircraft are employed by military users. The word “engine” is used to designate the aircraft propulsion system. The engine station designations used in this report are shown in Figure 1. Most of the material concerns an Electronic Engine Control (EEC) with its associated software, and its functional integration with the aircraft. However, the report also addresses the physical environment associated with the EEC and its associated wiring and sensors. Since most of today’s transport category
E-36 Electronic Engine Controls Committee
This document provides an overview of the tests and issues related to testing that are unique to Electrohydrostatic Actuators (EHAs). An EHA incorporates a linear or rotary hydraulic actuator and a variable speed, reversible electric servomotor driving a fixed displacement hydraulic pump for actuator control, and associated power drive electronics. The tests and issues documented are not necessarily all-inclusive. This document discusses both, the tests applicable to EHAs and the test methodologies to accomplish the test objectives. This document also lists tests that are not unique to EHAs, but are still applicable to EHAs. In these instances a discussion of such tests is not contained in this document, and as applicable, the reader may reference ARP1281 (Actuators: Aircraft Flight Controls, Power Operated, Hydraulic, General Specification For), which addresses test issues applicable to electrohydraulic flight control servoactuators. In the discussion of the tests and test
A-6B2 Electrohydrostatic Actuation Committee
This document will maintain a listing of all current and new EHA/EBHA aircraft applications, including parameters such as power, force, rate, etc, as is permissible for public offering.
A-6B2 Electrohydrostatic Actuation Committee
Abstract In autonomous technology, uncrewed aircraft systems have already become the preferred platform for the research and development of flight control systems. Although they are subjected to following and satisfying complicated scenarios of control stations, this high dependency on a specific control framework limits them in their application process and reduces the flight self-organizing network. In this article, we present a developed multilayer control system protocol with the additional supportive manned aircraft layer (Tender). The novelty of the introduced model is that uncrewed aircraft systems are monitored and navigated by the tender, and then based on the suggested scheme, data flows are controlled and transferred across the network by the developed cloud–robotics approach in the ground station layer. Therefore, it has been tried to design a semi-autonomous control network to gather data that combines human observation and the automotive nature of uncrewed aircraft
Millar, Richard C.Laliberté, JeremyMahmoodi, ArminHashemi, LeilaMeyer, Robert Walter
This work introduces a practical approach to external synchronization for flight control computers (FCCs) deployed in a decentralized fashion. The internal synchronization among the FCCs in distributed flight control systems needs to be extended for specific applications, necessitating an urgent need for an external synchronization mechanism. For instance, when the air data and attitude reference system (ADAHRS) and the flight control computer (FCC) are not synchronized, a dead time or time offset occurs between the time the ADAHRS transmits data and the time the FCC begins executing its control functions, which can impair flight control system performance or even cause system instability, particularly for the system with incremental control approaches, such as incremental nonlinear dynamic inversion (INDI). Therefore, an external synchronization technique that does not rely on establishing a global view of time that is accurately synchronized with an external reference device has been
Khozin, MokhamadHolzapfel, Florian
This SAE Aerospace Standard (AS) provides a system of graphic symbols and line codings that are intended primarily for usage in hydraulic and pneumatic system schematic diagrams for all types of aircraft.
A-6 Aerospace Actuation, Control and Fluid Power Systems
This SAE Aerospace Standard (AS) covers automatic pilots intended for use on aircraft to automatically operate the primary and trim aerodynamic controls to maintain stable flight and/or to provide maneuvering about any of the three axes through servo control. Automatic control functions essential for primary or augmented flight control are excluded.
A-4 Aircraft Instruments Committee
This SAE Aerospace Recommended Practice (ARP) covers the test procedures and equipment for performing flight testing on pitot-static systems installed in subsonic transport type aircraft.
A-4 Aircraft Instruments Committee
This document establishes the minimum training and qualification requirements for ground-based aircraft deicing/anti-icing methods and procedures. All guidelines referred to herein are applicable only in conjunction with the applicable documents. Due to aerodynamic and other concerns, the application of deicing/anti-icing fluids shall be carried out in compliance with engine and aircraft manufacturers’ recommendations. The scope of training should be adjusted according to local demands. There are a wide variety of winter seasons and differences of the involvement between deicing operators, and therefore the level and length of training should be adjusted accordingly. However, the minimum level of training shall be covered in all cases. As a rule of thumb, the amount of time spent in practical training should equal or exceed the amount of time spent in classroom training.
G-12T Training and Quality Programs Committee
This SAE Aerospace Standard (AS) covers air data computer equipment (hereinafter designated the computer) which when connected to sources of aircraft electrical power, static pressure, total pressure, outside air temperature, and others specified by the manufacturer (singly or in combination) provides some or all of the following computed air data output signals (in analog and/or digital form) which may supply primary and/or standby flight instruments: Pressure Altitude Pressure Altitude, Baro-Corrected Vertical Speed Calibrated Airspeed Mach Number Maximum Allowable Airspeed Over-speed Warning Total Air Temperature
A-4 Air Data Subcommittee
This SAE Aerospace Recommended Practice (ARP) provides recommendations for design and test requirements for a generic “passive” side stick that could be used for fly-by wire transport and business aircraft. It addresses the following: The functions to be implemented The geometric and mechanical characteristics The mechanical and electrical interfaces The safety and certification requirements
A-6A3 Flight Control and Vehicle Management Systems Cmt
These recommendations cover the mechanical and electrical installation and installation test procedures for automatic pilots of the type normally used in transport type aircraft. The material in this ARP does not supercede any airworthiness requirement in the Civil Air Regulations.
A-4 Aircraft Instruments Committee
Items per page:
1 – 50 of 1013