Browse Topic: Financial management

Items (505)
Abstract Brake squeal reduces comfort for the vehicle occupants, damages the reputation of the respective manufacturer, and can lead to financial losses due to cost-intensive repair measures. Mode coupling is mainly held responsible for brake squeal today. Two adjacent eigenfrequencies converge and coalesce due to a changing bifurcation parameter. Several approaches have been developed to suppress brake squeal through structural changes. The main objective is to increase the distance of coupling eigenfrequencies. This work proposes a novel approach to structural modifications and sizing optimization aiming for a start at shifting a single component eigenfrequency. Locations suitable for structural changes are derived such that surrounding modes do not significantly change under the modifications. The positions of modifications are determined through a novel sensitivity calculation of the eigenmode to be shifted in frequency. In the present work, the structural changes are carried out
Deutzer, MarcelStender, MertenTüpker, NicolasHoffmann, Norbert
SAE J4001 provides instruction for evaluating levels of compliance to SAE J4000. Component text (Sections 4 to 9) from SAE J4000 is included for convenience during the evaluation process. Applicable definitions and references are contained in SAE J4000. SAE J4000 tests lean implementation within a manufacturing organization and includes those areas of direct overlap with the organization’s suppliers and customers. If applied to each consecutive organizational link, an enterprise level evaluation can be made. SAE J4001 relates the following approximate topic percentages to the implementation process as a whole: SAE J4001 is to be applied on a specific component basis. Each of the 52 components tests part of, one, or multiples of the specific requirements of lean implementation. Implementation throughout an organization may be measured by evaluating all of the components. The level of compliance for each component relative to best practice may be used as a reference by an organization to
Automotive Quality and Process Improvement Committee
This Standard specifies the Habitability processes throughout planning, design, development, test, production, use and disposal of a system. Depending on contract phase and/or complexity of the program, tailoring of this standard may be applied. The primary goals of a contractor Habitability program include: Ensuring that the system design complies with the customer Habitability requirements and that discrepancies are reported to management and the customer. Identifying, coordinating, tracking, prioritizing, and resolving Habitability risks and issues and ensuring that they are: ○ Reflected in the contractor proposal, budgets, and plans ○ Raised at design, management, and program reviews ○ Debated in Working Group meetings ○ Coordinated with Training, Logistics, and the other HSI disciplines ○ Included appropriately in documentation and deliverable data items Ensuring that Habitability requirements are applied to all personnel environments, including operators, maintainers, trainers
G-45 Human Systems Integration
SAE J4000 is a tool to identify and measure best practice in the implementation of lean operation in a manufacturing organization. Implementation of lean operation is defined as the process of eliminating waste exhibited in an organization’s value stream. Best practice in this process is Level 3 conduct as described in the standard’s component statements. A description of the levels of implementation is: A procedure for evaluation and scoring of each component will be included in the SAE J4001 Implementation of Lean Operation User Manual.
Automotive Quality and Process Improvement Committee
This SAE EDGE Research Report looks at the pros and cons of moving this technology forward and brings recommendations to facilitate a smooth transition from fossil fuel-based to hydrogen-based mobility.Unsettled Issues Concerning the Economics of Fuel Cells and Electric Ground Vehicles discusses the unsettled economic aspects of hydrogen and fuel cell applications in the automotive industry. Lately, the idea of using hydrogen in automotive applications is gaining momentum. While the concept of using clean hydrogen fuel generated from water via electrolysis is nothing new, previous efforts to mainstream the technology failed miserably. About a decade ago, the fuel cell technology, which efficiently converts hydrogen and atmospheric oxygen into electricity, was not as advanced and the fuel cell prototypes were bulky and expensive.Yet, many new fuel cell electric vehicles (FCEVs) have emerged, and hydrogen refueling infrastructure is being built globally. Despite the important steps
Kolodziejczyk, Bart
Items per page:
1 – 50 of 505