Browse Topic: CAD, CAM, and CAE

Items (891)
The numerical analysis of the three-dimensional (3D) flow over a National Advisory Committee for Aeronautics (NACA) 6321 airfoil to evaluate the mass flow rate by using a novel method Improved Blowing and Suction System (IBSS) to control the boundary layer is presented in this study. Analysis is performed based on 3D Reynolds-Averaged Navier-Stokes (RANS) equation with a K-omega SST solver. The aerodynamic performance of the NACA 6321 is analyzed at a Mach number of 0.10 with three different mass flow rates, namely, 0.08 kg/s, 0.10 kg/s, and 0.12 kg/s. From the study, it is seen that when the mass flow rate decreased, the aerodynamics performance also reduced, and the aerodynamic performance improved with the increase in mass flow rate. Results also show that a mass flow rate of 0.10 kg/s improved the stalling angle of attack (AoA) by 60% and coefficient of lift (CL) by 50%, enabling optimum efficiency of the aircraft wing in all aspects compared to the baseline airfoil model. The mass
Karuppiah, BalajiWessley, Jims John
Many disciplines of the current vehicle development process are still based on subjective scoring of prototypes, especially in the field of vehicle dynamics. To further reduce the need for hardware and to discover possible weaknesses early in the development process and therefore reduce costs, suitable simulative methods are required. The influence of body and chassis stiffness on vehicle dynamics is not fully understood and requires further research to implement reliable simulative methods. The development of methods requires an understanding and objective depiction of the physical chain. The influences of stiffening beams at the front of a vehicle on the static and dynamic response of wheels and body are observed by using static and dynamic suspension kinematics and a compliance test rig setup. This response is assessed by acceleration sensors, strain gauges, and optical measurement of wheel positions. Static load cases show that minor differences are caused by varying the vehicle’s
Derrix, DanielDeubel, ClemensKubenz, JanProkop, Günther
This SAE Aerospace Recommended Practice (ARP) defines a means of assessing the credibility of computer models of aircraft seating systems used to simulate dynamic impact conditions set forth in Title 14, Code of Federal Regulations (14 CFR) Parts 23.562, 25.562, 27.562, and 29.562. The ARP is applicable to lumped mass and detailed finite element seat models. This includes specifications and performance criteria for aviation specific virtual anthropomorphic test devices (v-ATDs). This document provides a recommended methodology to evaluate the degree of correlation between a seat model and dynamic impact tests. This ARP also provides best practices for testing and modeling designed to support the implementation of analytical models of aircraft seat systems. Supporting information within this document includes procedures for the quantitative comparison of test and simulation results, as well as test summaries for data generated to support the development of v-ATDs and a sample v-ATD
Aircraft SEAT Committee
Items per page:
1 – 50 of 891