Browse Topic: Tires

Items (1,075)
Abstract A valuable quantity for analyzing the lateral dynamics of road vehicles is the side-slip angle, that is, the angle between the vehicle’s longitudinal axis and its speed direction. A reliable real-time side-slip angle value enables several features, such as stability controls, identification of understeer and oversteer conditions, estimation of lateral forces during cornering, or tire grip and wear estimation. Since the direct measurement of this variable can only be done with complex and expensive devices, it is worth trying to estimate it through virtual sensors based on mathematical models. This article illustrates a methodology for real-time on-board estimation of the side-slip angle through a machine learning model (SSE—side-slip estimator). It exploits a recurrent neural network trained and tested via on-road experimental data acquisition. In particular, the machine learning model only uses input signals from a standard road car sensor configuration. The model
Giuliacci, Tiziano AlbertoBallesio, StefanoFainello, MarcoMair, UlrichKing, Julian
Abstract Non-pneumatic tires (NPTs) have been widely used due to their advantages of no occurrence of puncture-related problems, no need of air maintenance, low rolling resistance, and improvement of passenger comfort due to its better shock absorption. It has a variety of applications as in earthmovers, planetary rover, stair-climbing vehicles, and the like. Recently, the unique puncture-proof tire system (UPTIS) NPT has been introduced for passenger vehicles segment. The spoke design of NPT-UPTIS has a significant effect on the overall working performance of tire. Optimized tire performance is a crucial factor for consumers and original equipment manufacturers (OEMs). Hence to optimize the spoke design of NPT-UPTIS spoke, the top and bottom curve of spoke profile have been described in the form of analytical equations. A generative design concept has been introduced to create around 50,000 spoke profiles. Finite element model (FEM) model is developed to evaluate the stiffness and
Dhrangdhariya, PriyankkumarMaiti, SoumyadiptaRai, Beena
This SAE Aerospace Recommended Practice (ARP) sets forth criteria for the installation, inflation, inspection, and maintenance of aircraft tires and the maintenance of the operating environment to ensure the safety of support personnel and the safe operation of the aircraft.
A-5C Aircraft Tires Committee
There are a large number of curves and slopes in the mountainous areas. Unreasonable acceleration and deceleration in these areas will increase the burden of the brake system and the fuel consumption of the vehicle. The main purpose of this paper is to introduce a speed planning and promotion system for commercial vehicles in mountainous areas. The wind, slope, curve, engine brake, and rolling resistances are analyzed to establish the thermal model of the brake system. Based on the thermal model, the safe speed of the brake system is acquired. The maximum safe speed on the turning section is generated by the vehicle dynamic model. And the economic speed is calculated according to the fuel consumption model. The planning speed is provided based on these models. This system can guide the driver to handle the vehicle speed more reasonably. According to the simulation, compared to cruise control, speed planning can save fuel consumption at a mean value of 9.13% in typical mountainous areas
Peng, DengzhiFang, KekuiTian, ZhongpengZhang, YuxiaoTan, Gangfeng
Items per page:
1 – 50 of 1075