Browse Topic: Tires

Items (877)
Abstract A valuable quantity for analyzing the lateral dynamics of road vehicles is the side-slip angle, that is, the angle between the vehicle’s longitudinal axis and its speed direction. A reliable real-time side-slip angle value enables several features, such as stability controls, identification of understeer and oversteer conditions, estimation of lateral forces during cornering, or tire grip and wear estimation. Since the direct measurement of this variable can only be done with complex and expensive devices, it is worth trying to estimate it through virtual sensors based on mathematical models. This article illustrates a methodology for real-time on-board estimation of the side-slip angle through a machine learning model (SSE—side-slip estimator). It exploits a recurrent neural network trained and tested via on-road experimental data acquisition. In particular, the machine learning model only uses input signals from a standard road car sensor configuration. The model
Giuliacci, Tiziano AlbertoBallesio, StefanoFainello, MarcoMair, UlrichKing, Julian
Abstract Non-pneumatic tires (NPTs) have been widely used due to their advantages of no occurrence of puncture-related problems, no need of air maintenance, low rolling resistance, and improvement of passenger comfort due to its better shock absorption. It has a variety of applications as in earthmovers, planetary rover, stair-climbing vehicles, and the like. Recently, the unique puncture-proof tire system (UPTIS) NPT has been introduced for passenger vehicles segment. The spoke design of NPT-UPTIS has a significant effect on the overall working performance of tire. Optimized tire performance is a crucial factor for consumers and original equipment manufacturers (OEMs). Hence to optimize the spoke design of NPT-UPTIS spoke, the top and bottom curve of spoke profile have been described in the form of analytical equations. A generative design concept has been introduced to create around 50,000 spoke profiles. Finite element model (FEM) model is developed to evaluate the stiffness and
Dhrangdhariya, PriyankkumarMaiti, SoumyadiptaRai, Beena
This SAE Aerospace Recommended Practice (ARP) sets forth criteria for the installation, inflation, inspection, and maintenance of aircraft tires and the maintenance of the operating environment to ensure the safety of support personnel and the safe operation of the aircraft.
A-5C Aircraft Tires Committee
There are a large number of curves and slopes in the mountainous areas. Unreasonable acceleration and deceleration in these areas will increase the burden of the brake system and the fuel consumption of the vehicle. The main purpose of this paper is to introduce a speed planning and promotion system for commercial vehicles in mountainous areas. The wind, slope, curve, engine brake, and rolling resistances are analyzed to establish the thermal model of the brake system. Based on the thermal model, the safe speed of the brake system is acquired. The maximum safe speed on the turning section is generated by the vehicle dynamic model. And the economic speed is calculated according to the fuel consumption model. The planning speed is provided based on these models. This system can guide the driver to handle the vehicle speed more reasonably. According to the simulation, compared to cruise control, speed planning can save fuel consumption at a mean value of 9.13% in typical mountainous areas
Peng, DengzhiFang, KekuiTian, ZhongpengZhang, YuxiaoTan, Gangfeng
This SAE Recommended Practice provides minimum performance target and uniform laboratory procedures for fatigue testing of wheels and demountable rims intended for normal highway use on trucks, buses, truck-trailers, and multipurpose vehicles. Users may establish design criteria exceeding the minimum performance target for added confidence in a design. The cycle target noted in Tables 1 and 2 are based on Weibull statistics using two parameter, median ranks, 50% confidence level and 90% reliability, and beta equal to two, typically noted as B10C50. For other wheels intended for normal highway use and temporary use on passenger cars, light trucks, and multipurpose vehicles, refer to SAE J328. For wheels used on trailers drawn by passenger cars, light trucks, or multipurpose vehicles, refer to SAE J1204. For bolt together military wheels, refer to SAE J1992. This document does not cover other special application wheels and rims.
Truck and Bus Wheel Committee
This SAE Recommended Practice describes a test method for measuring the forces and moments generated at a high frequency response spindle when a rolling tire impacts a cleat. The cleat is configured either with its crest perpendicular, 90 degrees, to the path of the tire or optionally with its crest inclined at an angle to the path of the tire. The carriage to which the spindle is attached is rigidly constrained in position during each test condition to provide a good approximation to fixed loaded radius operation. The method discussed in this document provides impact force and moment time histories essentially free from variations due to tire non-uniformities. The method applies to any size tire so long as the equipment is properly scaled to conduct the measurements for the intended test tire. The data are suitable for use in determining parameters for road load models and for comparative evaluations of the measured properties in research and development.
Vehicle Dynamics Standards Committee
This SAE Recommended Practice applies to the laboratory measurement of rolling resistance of pneumatic passenger car, light truck, and highway truck and bus tires. The procedure applies only to the steady-state operation of free-rolling tires at zero slip and inclination angles; it includes the following three basic methods:
Highway Tire Committee
This standard describes a requirement for automotive tire traceability. It includes a definition of the RFID tag and the associated tire data set that can be accessed using the RFID tag as an identifier. The standard describes a unique identification and the associated data set for each tire produced by the tire fabricator. This data will either be provided or transmitted at the time of shipment to retailers, wholesalers or original equipment vehicle manufacturers. Tire identification code and data may be used for error proofing, determining the tire specifications or supporting any inquiries that occur for the duration of its automotive life.
USCAR
This recommended practice applies to the laboratory measurement of the rolling resistance of pneumatic tires designed primarily for use on trucks and buses in normal highway service, as defined by the Tire and Rim Association, Inc. (TRA); it does not include light truck tires (designated LT). The procedure applies only to straight, free-rolling tires under steady-state operation and includes the following three basic methods:
Truck and Bus Tire Committee
The force, torque, and energy methods of measurement are all in common use and should yield the same test results. Effects of steering, traction, and non steady-state tire operations are excluded from the recommended practice because they are still in the research stage. Methods of correcting laboratory data to road conditions are being developed.
Truck and Bus Tire Committee
This SAE standard presents the basic information required for the design and manufacture of a wheel chock.
Truck and Bus Tire Committee
Mechanical and thermal properties of the rubber compounds of a tire play an important role in the overall performance of the tire when it is in contact with the terrain. Although there are many studies conducted on the properties of the rubber compounds of the tire to improve some of the tire characteristics, such as the wear of the tread, there are a limited number of studies that focused on the performance of the tire when it is in contact with ice. This study is a part of a more comprehensive project looking into the tire-ice performance and modeling. In this study, to understand the effect of different rubber compounds on the tire performance, three identical tires from the same company have been chosen. The tires’ only difference is the material properties of the rubber. Two approaches have been implemented in this study. For the first approach, several tests were conducted for the chosen tires at Terramechanics, Multibody, and Vehicle Systems (TMVS) laboratory at Virginia Tech to
Mousavi, HodaSandu, Corina
This SAE Recommended Practice establishes a procedure for determination of vehicle road load force for speeds between 115 km/h and 15 km/h (or between 70 mph and 10 mph). It employs the coastdown method and applies to vehicles designed for on-road operation. The final result is a model of road load force (as a function of speed) during operation on a dry, level road under reference conditions of 20 °C (68 °F), 98.21 kPa (29.00 in-Hg), no wind, no precipitation, and the transmission in neutral.
Light Duty Vehicle Performance and Economy Measure Committee
This article presents an approach for circumferential tire tread profiling using Laser Section (LS) technique and Photometric Stereo (PS) technique. The proposed approach uses a digital camera as the only data acquisition device, and one laser line generator and sixteen 5 mm white LEDs to provide different lighting conditions. LS technique uses the illumination of the laser line generator to measure the depth profile of one cross section of the tire surface, while PS technique utilizes the difference of the appearance of the tire surface under different lighting conditions to recover the geometry information of the tire tread with pixel resolution. The fusion of the two techniques results in a high-resolution three-dimensional (3D) profiling of the tire tread. A system to apply the proposed approach was developed, with the necessary calibration steps explained, with a step motor for circumferential measurement. The performance of the proposed approach was validated with a 225/60R16
Song, MengyuFurukawa, Tomonari
Items per page:
1 – 50 of 877