Browse Topic: Tire friction
There are a large number of curves and slopes in the mountainous areas. Unreasonable acceleration and deceleration in these areas will increase the burden of the brake system and the fuel consumption of the vehicle. The main purpose of this paper is to introduce a speed planning and promotion system for commercial vehicles in mountainous areas. The wind, slope, curve, engine brake, and rolling resistances are analyzed to establish the thermal model of the brake system. Based on the thermal model, the safe speed of the brake system is acquired. The maximum safe speed on the turning section is generated by the vehicle dynamic model. And the economic speed is calculated according to the fuel consumption model. The planning speed is provided based on these models. This system can guide the driver to handle the vehicle speed more reasonably. According to the simulation, compared to cruise control, speed planning can save fuel consumption at a mean value of 9.13% in typical mountainous areas
This SAE Recommended Practice applies to the laboratory measurement of rolling resistance of pneumatic passenger car, light truck, and highway truck and bus tires. The procedure applies only to the steady-state operation of free-rolling tires at zero slip and inclination angles; it includes the following three basic methods:
The force, torque, and energy methods of measurement are all in common use and should yield the same test results. Effects of steering, traction, and non steady-state tire operations are excluded from the recommended practice because they are still in the research stage. Methods of correcting laboratory data to road conditions are being developed.
This SAE Recommended Practice establishes a procedure for determination of vehicle road load force for speeds between 115 km/h and 15 km/h (or between 70 mph and 10 mph). It employs the coastdown method and applies to vehicles designed for on-road operation. The final result is a model of road load force (as a function of speed) during operation on a dry, level road under reference conditions of 20 °C (68 °F), 98.21 kPa (29.00 in-Hg), no wind, no precipitation, and the transmission in neutral.
Items per page:
50
1 – 50 of 453