Browse Topic: Hydraulic control

Items (158)
The data in this document is, at this stage, primarily concerned with the interface of pallet/container loaders and lower-deck compartments of standard and wide-body aircraft although the principles illustrated may be applied to the main-decks of narrow and wide-body aircraft. NOTE: For the purpose of this document, in accordance with Part 3 of the Directives for the technical work of ISO and with accepted IATA practice, minimum essential criteria defined by the word "shall" are absolute requirements. Recommended criteria identified by the word "should", while considered important, are not mandatory.
AGE-3 Aircraft Ground Support Equipment Committee
This study aims to solve the problem of impact in a parallel hybrid electric system based on the continuously variable transmission (CVT) during switching from pure electric mode to engine-driven, power-generating mode. Taking into account the torque response characteristics of the engine and motor and the dynamic characteristics of the wet clutch hydraulic control system, the mode switching process is divided into six stages, namely, pure electric mode, wet-clutch free travel, engine start-up, engine speed synchronization, clutch combination, and engine intervention drive. A coordination control strategy is developed based on the model predictive control algorithm to ensure smooth mode switching. The effectiveness of the control algorithm is verified using Matlab/Simulink and the AMESim co-simulation platform. Results show that with the mode switching coordination control strategy, the components of the system work harmoniously. The maximum impact is reduced by 52.0% at the speed
Zeng, XiaohuaLi, XiaojianDong, Bingbing
The purpose of this fuel filter test method is to provide standardized methods for evaluating the performance characteristics of fuel filters by bench test methods. This, combined with data obtained from application tests, may be used to establish standards of performance for filters when tested by these standard methods. Many variations in requirements of filtration to protect fuel supply equipment on engines and variations in operating conditions make it difficult to specify meaningful "in-service" performance standards by which a filter may be judged. By the use of these standard test methods, test conditions are always the same, and comparisons of the laboratory performance of filters may be made with a high degree of confidence. Once the requirements of a particular application are known, performance standards for suitable filters may be established by these test methods, and adequacy of performance of filters for the job may be determined. In order to achieve the highest degree
Filter Test Methods Standards Committee
Items per page:
1 – 50 of 158