Browse Topic: Amplifiers
The purpose of the invention was to increase the operational power levels of solid-state power amplifiers using state-ofthe- art power amplifier design and combining methodology. Using 1-kW RF modules and proper RF combining techniques, a system was built that generated 16 kW of RF power for use in electric plasma propulsion. The 1-kW units were fault-protected against excessive power, excessive current, and high VSWR, since the RF power devices are extremely sensitive to variations in their operating conditions.
State-of-the-art RF integrated circuits (ICs) achieve high performance via custom circuit elements with dedicated signal paths for application-specific functions, but long design lead times and non-recurring fabrication costs increase time-to-market for new applications and limit reuse. The key to developing an RF FPGA (radio frequency field-programmable gate array) is to provide RF switching components with very low insertion loss and high isolation that can be integrated with high-performance RF circuits in silicon germanium (SiGe) and gallium nitride (GaN) technologies, and integrating these circuits in a reconfigurable topology to allow an RF FPGA to perform a wide variety of functions.
A document discusses a multi-Gigabitper- second, Ka-band transceiver with a software-defined modem (SDM) capable of digitally encoding/decoding data and compensating for linear and nonlinear distortions in the end-to-end system, including the traveling-wave tube amplifier (TWTA). This innovation can increase data rates of space-to-ground communication links, and has potential application to NASA’s future spacebased Earth observation system.
Items per page:
50
1 – 50 of 269