Browse Topic: Electronic braking systems

Items (1,013)
ABSTRACT This paper presents a quantitative analysis and comparison of fuel economy and performance of a series hybrid electric HMMWV (High Mobility Multi-purpose Wheeled Vehicle) military vehicle with a conventional HMMWV of equivalent size. Hybrid vehicle powertrains show improved fuel economy gains due to optimized engine operation and regenerative braking. In this paper, a methodology is presented by which the fuel economy gains due to optimized engine are isolated from the fuel economy gains due to regenerative braking. Validated vehicle models as well as data collected on test tracks are used in the quantitative analysis. The regenerative braking of the hybrid HMMWV is analyzed in terms of efficiency from the kinetic energy at the wheels to the portion of regenerative power which is retrievable by the battery. The engine operation of both the series hybrid and conventional HMMWV are analyzed using a 2-D bin analysis methodology. Finally, the vehicle model is used to make
Nedungadi, AshokMasrur, AbulKhalil, Gus
Abstract A valuable quantity for analyzing the lateral dynamics of road vehicles is the side-slip angle, that is, the angle between the vehicle’s longitudinal axis and its speed direction. A reliable real-time side-slip angle value enables several features, such as stability controls, identification of understeer and oversteer conditions, estimation of lateral forces during cornering, or tire grip and wear estimation. Since the direct measurement of this variable can only be done with complex and expensive devices, it is worth trying to estimate it through virtual sensors based on mathematical models. This article illustrates a methodology for real-time on-board estimation of the side-slip angle through a machine learning model (SSE—side-slip estimator). It exploits a recurrent neural network trained and tested via on-road experimental data acquisition. In particular, the machine learning model only uses input signals from a standard road car sensor configuration. The model
Giuliacci, Tiziano AlbertoBallesio, StefanoFainello, MarcoMair, UlrichKing, Julian
As consumers transition from internal combustion engine (ICE)-powered vehicles to battery electric vehicles (BEV), they will expect the same fuel economy label-to-on-road correlation. Current labeling procedures for BEVs allow a 0.7 or higher multiplier to be applied to the unadjusted fuel economy and range values. For ICE-powered vehicles, the adjustment factor decreases with increasing unadjusted fuel economy and can be lower than 0.7. To better inform consumers, starting in 2016, Car and Driver added an on-road highway fuel-economy test, conducted at 120 kph (75 mph), that augments the performance metrics that it's been measuring since the 1950s. For electric vehicles, testing includes an evaluation of the all-electric range.The on-road test results were aligned with the certification information for each vehicle model including unadjusted and label fuel economy and range, road load force coefficients, and labeling options. Tractive energy and kinetic energy available for
Pannone, GregoryVanderWerp, Dave
In-phase rear-wheel steering, where rear wheels are steered in the same direction of front wheels, has been widely investigated in the literature for vehicle stability improvements along with stability control systems. Much faster response can be achieved by steering the rear wheels automatically during an obstacle avoidance maneuver without applying the brakes where safe stopping distance is not available. Sudden lane change movements still remain challenging for heavy articulated vehicles, such as tractor and semitrailer combinations, particularly on roads with low coefficient of adhesion. Different lateral accelerations acting on tractor and semi-trailer may cause loss of stability resulting in jackknifing, trailer-swing, rollover, or slip-off. Several attempts have been made in the literature to use active steering of semi-trailer’s rear wheels to prevent jackknifing and rollover. However, loss of stability in an articulated vehicle is usually caused by an oversteered tractor, and
Sahin, HasanAkalin, Ozgen
Items per page:
1 – 50 of 1013