Browse Topic: Braking systems

Items (3,540)
The purpose of this AIR (Aerospace Information Report) is to provide aircraft and engine designers with a better understanding of helicopter turboshaft engine idle power characteristics and objectives to be considered in the design process. Idle is the lowest steady state power setting. At this setting, the engine typically does not produce enough power to obtain governed output shaft speed (i.e. the shaft speed is determined by the load imposed by the aircraft). In the aircraft, the engine is typically stabilized at this power setting after starting, prior to taxi and for some period of time after rotor shutdown for cool down prior to engine shutoff. Traditionally, the aircraft designer wants idle power scheduled as low as possible and of course, does not want any resulting aircraft operational difficulties such as overcoming the rotor brake. The engine designer, however, desires a higher scheduled power because of the reduced probability of engine operational problems. The attributes
S-12 Powered Lift Propulsion Committee
Verifying large alternate product code for an Joint Aerospace/Ground Vehicle Document document - JAGV01
Active Safety Systems Standards Committee
This SAE Standard covers motor vehicle brake fluids of the nonpetroleum type, based upon glycols, glycolethers, and appropriate inhibitors, for use in the braking system of any motor vehicle such as a passenger car, truck, bus, or trailer. These fluids are not intended for use under arctic conditions. These fluids are designed for use in braking systems fitted with rubber cups and seals made from styrene-butadiene rubber (SBR), or a terpolymer of ethylene, propylene, and a diene (EPDM).
Brake Fluids Standards Committee
test
Automotive Brake and Steering Hose Standards Comm
ABSTRACT This paper presents a quantitative analysis and comparison of fuel economy and performance of a series hybrid electric HMMWV (High Mobility Multi-purpose Wheeled Vehicle) military vehicle with a conventional HMMWV of equivalent size. Hybrid vehicle powertrains show improved fuel economy gains due to optimized engine operation and regenerative braking. In this paper, a methodology is presented by which the fuel economy gains due to optimized engine are isolated from the fuel economy gains due to regenerative braking. Validated vehicle models as well as data collected on test tracks are used in the quantitative analysis. The regenerative braking of the hybrid HMMWV is analyzed in terms of efficiency from the kinetic energy at the wheels to the portion of regenerative power which is retrievable by the battery. The engine operation of both the series hybrid and conventional HMMWV are analyzed using a 2-D bin analysis methodology. Finally, the vehicle model is used to make
Nedungadi, AshokMasrur, AbulKhalil, Gus
Abstract This article takes the wet multi-disc brake used in mining Isuzu 600P as the research object, establishes a simplified three-dimensional model of its key components through SOLIDWORKS and imports it into ANSYS Workbench to establish the flow field and structure field model of the wet brake. Based on the fluid–solid coupling, the finite element simulation of the temperature field and stress field of the friction pair of the wet brake under different braking pressures, braking initial speeds, and fluid viscosities was carried out, and then the position changes of the friction pairs at high temperature hot spots and high stress points were analyzed to determine the stability of its friction performance. Finally, by comparing the temperature change curves of the same point during the braking process under different braking conditions, the validity of the finite element analysis results is verified. The results show that the flow field pressure inside the wet brake is opposite to
Zhang, ChuanweiJin, XiaoheZhao, DaweiLiu, Jinpeng
Abstract A valuable quantity for analyzing the lateral dynamics of road vehicles is the side-slip angle, that is, the angle between the vehicle’s longitudinal axis and its speed direction. A reliable real-time side-slip angle value enables several features, such as stability controls, identification of understeer and oversteer conditions, estimation of lateral forces during cornering, or tire grip and wear estimation. Since the direct measurement of this variable can only be done with complex and expensive devices, it is worth trying to estimate it through virtual sensors based on mathematical models. This article illustrates a methodology for real-time on-board estimation of the side-slip angle through a machine learning model (SSE—side-slip estimator). It exploits a recurrent neural network trained and tested via on-road experimental data acquisition. In particular, the machine learning model only uses input signals from a standard road car sensor configuration. The model
Giuliacci, Tiziano AlbertoBallesio, StefanoFainello, MarcoMair, UlrichKing, Julian
Items per page:
1 – 50 of 3540