Browse Topic: Drag

Items (768)
This SAE Information Report has been prepared at the request of the SAE Road Vehicle Aerodynamics Forum Committee (RVAC), incorporating material from earlier revisions of the document first prepared by the Standards Committee on Cooling Flow Measurement (CFM).Although a great deal is already known about engine cooling, recent concern with fuel conservation has resulted in generally smaller air intakes whose shape and location are dictated primarily by low vehicle drag/high forward speed requirements. The new vehicle intake configurations make it more difficult to achieve adequate cooling under all conditions. They cause cooling flow velocity profiles to become distorted and underhood temperatures to be excessively high. Such problems make it necessary to achieve much better accuracy in measuring cooling flows.As the following descriptions show, each company or institution concerned with this problem has invested a lot of time and as a result gained considerable experience in developing
Road Vehicle Aerodynamics Forum Committee
ABSTRACT Determining the required power for the tractive elements of off-road vehicles has always been a critical aspect of the design process for military vehicles. In recent years, military vehicles have been equipped with hybrid, diesel-electric drives to improve stealth capabilities. The electric motors that power the wheel or tracks require an accurate estimation of the power and duty cycle for a vehicle during certain operating conditions. To meet this demand, a GPS-based mobility power model was developed to predict the duty cycle and energy requirements of off-road vehicles. The dynamic vehicle parameters needed to estimate the forces developed during locomotion are determined from the GPS data, and these forces include the following: the gravitational, acceleration, motion resistance, aerodynamic drag, and drawbar forces. Initial application of the mobility power concept began when three U.S. military’s Stryker vehicles were equipped with GPS receivers while conducting a
Ayers, PaulBozdech, George
Abstract In subsonic aircraft design, the aerodynamic performance of aircraft is compared meaningfully at a system level by evaluating their range and endurance, but cannot do so at an aerodynamic level when using lift and drag coefficients, CL and CD , as these often result in misleading results for different wing reference areas. This Part I of the article (i) illustrates these shortcomings, (ii) introduces a dimensionless number quantifying the induced drag of aircraft, and (iii) proposes an aerodynamic equation of state for lift, drag, and induced drag and applies it to evaluate the aerodynamics of the canard aircraft, the dual rotors of the hovering Ingenuity Mars helicopter, and the composite lifting system (wing plus cylinders in Magnus effect) of a YOV-10 Bronco. Part II of this article applies this aerodynamic equation of state to the flapping flight of hovering and forward-flying insects. Part III applies the aerodynamic equation of state to some well-trodden cases in fluid
Burgers, Phillip
Part I introduced the aerodynamic equation of state. This Part II introduces the aerodynamic equation of state for lift and induced drag of flapping wings and applies it to a hovering and forward-flying bumblebee and a mosquito. Two- and three-dimensional graphical representations of the state space are introduced and explored for engineered subsonic flyers, biological fliers, and sports balls.
Burgers, Phillip
In subsonic aircraft design, the aerodynamic performance of aircraft is compared meaningfullyby evaluating their range and endurance, but cannot do so atwhen using lift and drag coefficients,and, as these often result in misleading results for different wing reference areas. This Part I of the article (i) illustrates these shortcomings, (ii) introduces a dimensionless number quantifying the induced drag of aircraft, and (iii) proposes anfor lift, drag, and induced drag and applies it to evaluate the aerodynamics of the canard aircraft, the dual rotors of the hoveringMars helicopter, and the composite lifting system (wing plus cylinders in Magnus effect) of a YOV-10. Part II of this article applies this aerodynamic equation of state to the flapping flight of hovering and forward-flying insects. Part III applies the aerodynamic equation of state to some well-trodden cases in fluid mechanics found in fluid-mechanics textbooks.
Burgers, Phillip
Aerodynamic interaction between vehicles on a roadway can modify the fuel use and greenhouse gas emissions of the vehicle relative to their performance under isolated, uniform-wind conditions. A comprehensive wind-tunnel study was undertaken to examine changes to the aerodynamic drag experienced by vehicles in close proximity, in adjacent lanes. Wind-load measurements were conducted for two general configurations: 15%-scale testing with light-duty-vehicle (LDV) models, and 6.7%-scale testing with a heavy-duty vehicle (HDV) model. For the LDV study, a DrivAer model was tested with a proximate AeroSUV model or an Ahmed model at lateral distances representing 75%, 100%, and 125% of a typical highway lane spacing, and for longitudinal distances up to 2 vehicle lengths forward and back. Commensurate measurements were conducted for the AeroSUV model with the proximate DrivAer or Ahmed model. For the HDV study, a tractor-trailer model was tested with a single or combination of adjacent-lane
McAuliffe, BrianBarber, Hali
There are a large number of curves and slopes in the mountainous areas. Unreasonable acceleration and deceleration in these areas will increase the burden of the brake system and the fuel consumption of the vehicle. The main purpose of this paper is to introduce a speed planning and promotion system for commercial vehicles in mountainous areas. The wind, slope, curve, engine brake, and rolling resistances are analyzed to establish the thermal model of the brake system. Based on the thermal model, the safe speed of the brake system is acquired. The maximum safe speed on the turning section is generated by the vehicle dynamic model. And the economic speed is calculated according to the fuel consumption model. The planning speed is provided based on these models. This system can guide the driver to handle the vehicle speed more reasonably. According to the simulation, compared to cruise control, speed planning can save fuel consumption at a mean value of 9.13% in typical mountainous areas
Peng, DengzhiFang, KekuiTian, ZhongpengZhang, YuxiaoTan, Gangfeng
This recommended practice applies to the laboratory measurement of the rolling resistance of pneumatic tires designed primarily for use on trucks and buses in normal highway service, as defined by the Tire and Rim Association, Inc. (TRA); it does not include light truck tires (designated LT). The procedure applies only to straight, free-rolling tires under steady-state operation and includes the following three basic methods:
Truck and Bus Tire Committee
The force, torque, and energy methods of measurement are all in common use and should yield the same test results. Effects of steering, traction, and non steady-state tire operations are excluded from the recommended practice because they are still in the research stage. Methods of correcting laboratory data to road conditions are being developed.
Truck and Bus Tire Committee
Items per page:
1 – 50 of 768