Browse Topic: Air traffic control

Items (304)
This document applies to safety observers or spotters involved with the use of outdoor laser systems. It may be used in conjunction with SAE Aerospace Standard (AS4970) “Human Factors Considerations for Outdoor Laser Operations in the Navigable Airspace.” Additional control measures may be applicable and are listed in ANSI Z136.6.
G10T Laser Safety Hazards Committee
This document sets forth general, functional, procedural, and design criteria and recommendations concerning human engineering of data link systems. The recommendations are based on limited evidence from empirical and analytic studies of simulated data link communication, and on experience from operational tests and actual use of data link. However, because data are not yet available to support recommendations on all potentially critical human engineering issues these recommendations necessarily go beyond the data link research and include requirements based on related research and human factors engineering practice. It is also recognized that evolution of these recommendations will be appropriate as experience with data link accumulates and new applications are implemented. This document focuses primarily on recommendations for data link communications between an air traffic specialist and a pilot, i.e., air traffic services communications, although some recommendations address use of
G-10 Executive Advisory Group
This SAE Aerospace Standard (AS) covers air data computer equipment (hereinafter designated the computer) which when connected to sources of aircraft electrical power, static pressure, total pressure, outside air temperature, and others specified by the manufacturer (singly or in combination) provides some or all of the following computed air data output signals (in analog and/or digital form) which may supply primary and/or standby flight instruments: Pressure Altitude Pressure Altitude, Baro-Corrected Vertical Speed Calibrated Airspeed Mach Number Maximum Allowable Airspeed Over-speed Warning Total Air Temperature
A-4 Air Data Subcommittee
Unmanned aerial vehicles (UAVs) are an emerging technology with a large variety of commercial and military applications. In-flight icing occurs during flight in supercooled clouds or freezing precipitation and is a potential hazard to all aircraft. In-flight icing on UAVs imposes a major limitation on the operational envelope. This report describes the unsettled topics related to UAV icing. First, typical UAV applications and the general hazards of icing are described. Second, an overview of the special technical characteristics of icing on autonomous and unmanned aircraft is given. Third, the operational challenges for flight in icing conditions are discussed. Fourth, technologies for ice protection that mitigate the icing hazard are introduced. Fifth, the tools and methods required to understand UAV icing and to develop aircraft with cold-weather capabilities are presented. Finally, an assessment of the current and future regulations regarding icing on UAVs is provided.Icing is a key
Hann, RichardJohansen, Tor A.
Convective weather systems, i.e., thunderstorms, are the leading cause of flight delay in U.S. airspace. Airline dispatchers must file their flight plans 1 to 2 hours before takeoff, and are often required to incorporate large buffers to forecast weather. Weather changes as flights progress, and airline dispatchers, Federal Aviation Administration (FAA) traffic managers, and air traffic controllers are especially busy during weather events. Workable opportunities for more efficient routes around bad weather are often missed, and automation does not exist to help operators determine when weather avoidance routes have become stale and could be updated to reduce delay.
Items per page:
1 – 50 of 304