Browse Topic: Automatic transmissions

Items (1,342)
This SAE Recommended Practice is intended as the definition of a standard test, which may be subject to frequent change to keep pace with experience and technical advances. This should be kept in mind when considering its use.The SAE No. 2 Friction Test Machine is used to evaluate the friction characteristics of automatic transmission plate clutches with automotive transmission fluids. It can also be used to conduct durability tests on wet friction systems.The specific purpose of this document is to define a µPVT Test for the evaluation of the variation of wet friction system performance as a function of speed, temperature, and pressure. This procedure is intended as a standard for both suppliers and end users.The only variables selected by the supplier or user of the friction system are:a. Friction materialb. Fluidc. Reaction platesThese three variables must be clearly identified when reporting the results of this test. If any of the test parameters or system hardware as described in
Automatic Transmission and Transaxle Committee
This SAE Recommended Practice is intended as the definition of a standard test, but may be subject to frequent change to keep pace with experience and technical advances. This should be kept in mind when considering its use.The SAE No. 2 Friction Test Machine is used to evaluate the friction characteristics of automatic transmission plate clutches with automotive transmission fluids. It can also be used to conduct durability tests on wet friction systems.The specific purpose of this document is to define a 6000 rpm stepped power test for the evaluation of wet friction system performance variation as a function of power level. This procedure uses an initial engagement speed of 6000 rpm and is intended as a standard procedure for common use by both suppliers and end users.The only variables selected by the supplier or user of the friction system are:a. Friction materialb. Fluidc. Reaction platesThese three variables must be clearly identified when reporting the results of using this test
Automatic Transmission and Transaxle Committee
This SAE Recommended Practice is intended as the definition of a standard test, but may be subject to frequent change to keep pace with experience and technical advances. This should be kept in mind when considering its use.The SAE No. 2 Friction Test Machine is used to evaluate the friction characteristics of automatic transmission plate clutches with automotive transmission fluids. It can also be used to conduct durability tests on wet friction systems.The specific purpose of this document is to define a 3600 rpm Stepped Power Test for the evaluation of wet friction system performance variation as a function of power level. This procedure uses an initial engagement speed of 3600 rpm and is intended as a standard procedure for common use by both suppliers and end users.The only variables selected by the supplier or user of the friction system are:a. Friction Materialb. Fluidc. Reaction PlatesThese three variables must be clearly identified when reporting the results of using this test
Automatic Transmission and Transaxle Committee
WHY DO WE NEED SIMULATIONS? This paper is intended to provide a broad presentation of the simulation techniques focusing on transmission testing touching a bit on power train testing. Often, we do not have the engine or vehicle to run live proving ground tests on the transmission. By simulating the vehicle and engine, we reduce the overall development time of a new transmission design. For HEV transmissions, the battery may not be available. However, the customer may want to run durability tests on the HEV motor and/or the electronic control module for the HEV motor. What-if scenarios that were created using software simulators can be verified on the test stand using the real transmission. NVH applications may prefer to use an electric motor for engine simulation to reduce the engine noise level in the test cell so transmission noise is more easily discernable.
Johnson, Bryce
The ongoing electrification and data-intelligence trends in logistics industries enable efficient powertrain design and operation. In this work, the commercial package delivery vehicle powertrain design space is revisited with a specific combination of optimization and control techniques that promise accurate results with relatively fast computational time. The specific application that is explored here is a Class 6 pickup and delivery truck. A statistical learning approach is used to refine the search for the most optimal designs. Five hybrid powertrain architectures, namely, two-speed e-axle, three-speed and four-speed automatic transmission (AT) with electric motor (EM), direct-drive, and dual-motor options are explored, and a set of Pareto-optimal designs are found for a specific driving mission that represents the variations in a hypothetical operational scenario. The modeling and optimization processes are performed on the MATLAB™-Simulink platform. A cross-architecture
Anil, Vijay SankarZhao, TongZhao, MingjieVillani, ManfrediAhmed, QadeerRizzoni, Giorgio
The scope and purpose of the SAE Recommended Practice is to provide standards for the control and indication of parking brakes in hydraulic braked vehicles over 4540 kg (10000 lb) GVWR. This recommended practice pertains to automatic transmission applications and supplements the SAE J915 recommended practice. This recommended practice does not address parking brake system performance. Parking brake system performance, both static and dynamic conditions, is the responsibility of the OEM vehicle manufacturer or manufacturers that modify the vehicle by adding special vocational required equipment (such as but not limited to outriggers, cranes, etc.).
Truck and Bus Hydraulic Brake Committee
Items per page:
1 – 50 of 1342