Browse Topic: Automatic transmissions

Items (1,236)
The ongoing electrification and data-intelligence trends in logistics industries enable efficient powertrain design and operation. In this work, the commercial package delivery vehicle powertrain design space is revisited with a specific combination of optimization and control techniques that promise accurate results with relatively fast computational time. The specific application that is explored here is a Class 6 pickup and delivery truck. A statistical learning approach is used to refine the search for the most optimal designs. Five hybrid powertrain architectures, namely, two-speed e-axle, three-speed and four-speed automatic transmission (AT) with electric motor (EM), direct-drive, and dual-motor options are explored, and a set of Pareto-optimal designs are found for a specific driving mission that represents the variations in a hypothetical operational scenario. The modeling and optimization processes are performed on the MATLAB™-Simulink platform. A cross-architecture
Anil, Vijay SankarZhao, TongZhao, MingjieVillani, ManfrediAhmed, QadeerRizzoni, Giorgio
The scope and purpose of the SAE Recommended Practice is to provide standards for the control and indication of parking brakes in hydraulic braked vehicles over 4540 kg (10000 lb) GVWR. This recommended practice pertains to automatic transmission applications and supplements the SAE J915 recommended practice. This recommended practice does not address parking brake system performance. Parking brake system performance, both static and dynamic conditions, is the responsibility of the OEM vehicle manufacturer or manufacturers that modify the vehicle by adding special vocational required equipment (such as but not limited to outriggers, cranes, etc.).
Truck and Bus Hydraulic Brake Committee
Items per page:
1 – 50 of 1236