Browse Topic: Hybrid engines

Items (345)
This study aims to solve the problem of impact in a parallel hybrid electric system based on the continuously variable transmission (CVT) during switching from pure electric mode to engine-driven, power-generating mode. Taking into account the torque response characteristics of the engine and motor and the dynamic characteristics of the wet clutch hydraulic control system, the mode switching process is divided into six stages, namely, pure electric mode, wet-clutch free travel, engine start-up, engine speed synchronization, clutch combination, and engine intervention drive. A coordination control strategy is developed based on the model predictive control algorithm to ensure smooth mode switching. The effectiveness of the control algorithm is verified using Matlab/Simulink and the AMESim co-simulation platform. Results show that with the mode switching coordination control strategy, the components of the system work harmoniously. The maximum impact is reduced by 52.0% at the speed
Zeng, XiaohuaLi, XiaojianDong, Bingbing
The document provides clarity related to multiple temperature coolant circuits used in on- and off-highway, gasoline, and light- to heavy-duty diesel engine cooling systems. Out of scope are the terms and definitions of thermal flow control valves used in either low- or high-temperature coolant circuits. This subject is covered in SAE J3142.
Cooling Systems Standards Committee
Items per page:
1 – 50 of 345