Browse Topic: Dual fuel engines

Items (833)
This SAE Aerospace Information Report (AIR) is intended as a source of comparative information and is subject to change to keep pace with experience and technical advances. This document describes currently used fuels and fuels which may be used in the future. Conventional gasoline and diesel fuels are intentionally omitted from this document.
AGE-3 Aircraft Ground Support Equipment Committee
Reliability and cost effectiveness of electronics demands its usage in all the wings of science and technology. Thus an attempt was made in this work to investigate the potential of using electronics for injecting primary fuel for the compression ignition engine used by farmers for agricultural purpose. In the first phase of the work, a new Electronic Control Unit (ECU) for primary fuel injection was developed and tested for its repeatability on fuel injection quantity for the different input voltages. Test engine was developed and tested under various load condition for its performance, emission, and combustion characteristics with neat diesel and Waste Cooking Oil Methyl Esters (WCOME) as baseline readings in the second phase of the work. In the third phase of work, the developed engine was modified to operate in duel fuel mode with developed ECU. In this work, ethanol was chosen as primary fuel due to its availability and less toxic nature as compared to other green fuels. Pilot
Nandagopal, SasikumarAnaimuthu, ShridharMayakrishnan, JaikumarRaja, SelvakumarBusireddy, VamshidharKovuru, Madhu
The cottonseed oil, soybean oil and their methyl esters have been used as a pilot fuels for dual fuel engine running on the LPG as the main fuel. A variable compression research diesel engine has been converted to run on dual fuel of LPG and a pilot fuel derived from the renewable liquid fuels above. The engine has been instrumented to measure the combustion pressure, crank angles, exhaust temperature, flow rates of air, pilot fuel and gaseous fuel. The effects of changing the following parameters have been studied: the mass of pilot fuel, the mass of gaseous fuel, the pilot fuel injection timing, engine speed and the pilot fuel type. Five different pilot fuels has been tested here namely the cottonseed raw oil, the cottonseed methyl ester, the soybean raw oil, the soybean methyl ester and the diesel fuel as a reference fuel. The results presented included the combustion noise (as maximum pressure rise rate), the heat release rate, the maximum combustion pressure, the exhaust
Selim, Mohamed Y. E.Saleh, Hosam E.
This paper investigates the performance and combustion characteristics of a compression ignition engine (CI engine) fueled with Used Cooking Oil Biodiesel (UCOB) and ethanol in dual fuel mode. In this study, UCOB was injected as the main fuel through a conventional mechanical fuel injection system. Various mass flow rates of ethanol were inducted as primary fuel through the engine intake manifold using a separate fuel injection system. Mass flow rates of ethanol were metered by an electronic control circuit. The engine test was conducted under different load conditions from no load to full load in a fully instrumented direct injection, water-cooled compression ignition engine. The results indicated that the dual fuel engine produced higher brake thermal efficiency, cylinder pressure, heat release rate with lower specific fuel consumption at a higher load condition. However, it was found that combustion characteristics improved marginally at the lower load conditions.
Velmurugan, RamanathanMayakrishnan, JaikumarPalanimuthu, VijayabalanNandagopal, SasikumarElumalai, SangeethkumarAnaimuthu, ShridharBusireddy, Vamshidhar
This work numerically investigates the detailed combustion kinetics of partially premixed combustion (PPC) in a diesel engine under three different premixed ratio fuel conditions. A reduced Primary Reference Fuel (PRF) chemical kinetics mechanism was coupled with CONVERGE-SAGE CFD model to predict PPC combustion under various operating conditions. The experimental results showed that the increase of premixed ratio (PR) fuel resulted in advanced combustion phasing. To provide insight into the effects of PR on ignition delay time and key reaction pathways, a post-process tool was used. The ignition delay time is related to the formation of hydroxyl (OH). Thus, the validated Converge CFD code with the PRF chemistry and the post-process tool was applied to investigate how PR change the formation of OH during the low-to high-temperature reaction transition. The reaction pathway analyses of the formations of OH before ignition time were investigated. It was found that in the case of PR0
Zhao, YuanyuanWang, HuLiu, XinleiLiu, DaojianChenchen, WangZhu, HongyanZheng, ZunqingYao, Mingfa
A number of studies in diesel dual fuel (DDF) operation which introduces natural gas from the intake pipe and ignites it by a diesel fuel injection in the combustion chamber have been conducted using conventional diesel engines. The present study investigated the influence of the ignition fuel on engine performance, combustion characteristics, and emissions with a combination of EGR and supercharging in DDF operation. The experiments employed iso-pentanol blended fuels for the ignition. Isopentanol is a next generation bio-alcohol fuel produced from cellulosic biomass, and actual use can be expected. The experiments were conducted at two CNG supply rates, 0% (ordinary diesel operation) and at a 40±4% (DDF operation) energy basis, and with EGR rates varied from 0 to 26%. The boost pressure was set at two conditions, 100 kPa (naturally aspirated, N/A) and 120 kPa (supercharged, S/C) with a supercharger. Four kinds of ignition fuels were used, JIS No.2 diesel fuel as a reference, neat
Yoshimoto, YasufumiKinoshita, EijiOtaka, Takeshi
Items per page:
1 – 50 of 833