Browse Topic: Rare earth metals
This specification defines limits of variation for determining acceptability of the composition of cast or wrought titanium and titanium alloy parts and material acquired from a producer.
This document has not changed other than to put it into the new SAE Technical Standards Board Format This SAE Standard covers the most commonly used magnesium alloys suitable for casting by the various commercial processes. The chemical composition limits and minimum mechanical properties are shown. Over the years, magnesium alloys have been identified by many numbering systems, as shown in Table 1. Presently, SAE is recommending the use of the use of the UNS numbering system to identify those materials. Other equally important characteristics such as surface finish and dimensional tolerances are not covered in this standard.
This SAE Standard covers the hardness, chemical analysis and microstructural requirements for ductile iron castings intended for high temperature service in automotive and allied industries. Commonly known as SiMo ductile iron, typical applications are in piston-engine exhaust manifolds and turbocharger parts. Castings may be specified in the as-cast or heat treated condition. For design purposes, the Appendix provides general information on the application of high temperature ductile iron castings, their processing conditions, chemical composition, mechanical properties and microstructure.
This SAE Standard covers the most common magnesium alloys used in wrought forms, and lists chemical composition and minimum mechanical properties for the various forms. A general indication of the usage of the various materials is also provided.
Materials scientists from North Carolina State University, Raleigh, NC, and Qatar University have developed a new high-entropy metal alloy that, they say, has a higher strength-to-weight ratio than any other existing metal material. High-entropy alloys consist of five or more metals in roughly equal amounts. The researchers say that strong, lightweight materials, may be very useful in prosthetic devices, as well as many other uses.
Engineers at Rutgers University, New Brunswick, NJ, say that a new medical imaging method they are developing may help physicians detect cancer and other diseases earlier than before, speeding treatment, and reducing the need for invasive, time-consuming biopsies. Their technique uses nanotechnology to reveal small cancerous tumors and cardiovascular lesions deep inside the body.
A new method has been developed to create coherent laser light efficiently with direct optical coupling of the Sun’s energy into the gain medium for multiple uses. New advances in solar cell photovoltaic (PV) technologies have greatly improved their efficiencies, mostly by improving their ability to convert many wavelengths or wider bands of the solar spectrum to electricity. New advances in actively doped fibers and optical glasses have been shown to produce very broad, multi-line absorption bands as well as stimulated emission lines, or laser lines. By designing the optical cavity system to feed back all emission bands into the gain media for amplification, a multi-wavelength source can be generated requiring no electronics.
There are two types of voice coil actuators: moving coil and moving magnet. The materials of construction are similar, since they both use rare earth magnets, steel, copper wire, and basic insulation materials. There is a tendency to want to say one type is better suited for certain applications; however, there are many different sizes and shapes of voice coil actuators, making it difficult to make blanket statements about which type of actuator works better, and where.
Items per page:
50
1 – 50 of 202