Browse Topic: Rare earth metals

Items (212)
This document provides risk mitigation for Pb-free solders used internal to parts used in Aerospace and Defense applications. It will include mitigations applicable to encapsulated and cavity devices as the needs arise in industry. Currently this revision only addresses devices with encapsulation or underfill. Mitigations for open cavity devices are still being discussed, and will be addressed in future revisions. Microbumps with Thermal Compression Bonding (TCB) are not addressed by the mitigations in this document. The use of Pb-free microbumps with TCB are considered out of scope at this time. It is expected that this document will be primarily used by Control Levels 3 and 2C (as defined in GEIA-STD-0005-2 for programs that do not allow use of Pb-free tin or only allow its use on an exception basis). It may be used by other levels, or by applications not using GEIA-STD-0005-2.
G-24 Pb-free Risk Management Committee for ADHP
This specification defines limits of variation for determining acceptability of the composition of cast or wrought titanium and titanium alloy parts and material acquired from a producer.
AMS G Titanium and Refractory Metals Committee
This SAE Standard covers the hardness, chemical analysis and microstructural requirements for ductile iron castings intended for high temperature service in automotive and allied industries. Commonly known as SiMo ductile iron, typical applications are in piston-engine exhaust manifolds and turbocharger parts. Castings may be specified in the as-cast or heat treated condition. For design purposes, the Appendix provides general information on the application of high temperature ductile iron castings, their processing conditions, chemical composition, mechanical properties and microstructure.
Metals Technical Committee
This SAE Standard covers the most common magnesium alloys used in wrought forms, and lists chemical composition and minimum mechanical properties for the various forms. A general indication of the usage of the various materials is also provided.
Metals Technical Committee
This document has not changed other than to put it into the new SAE Technical Standards Board Format This SAE Standard covers the most commonly used magnesium alloys suitable for casting by the various commercial processes. The chemical composition limits and minimum mechanical properties are shown. Over the years, magnesium alloys have been identified by many numbering systems, as shown in Table 1. Presently, SAE is recommending the use of the use of the UNS numbering system to identify those materials. Other equally important characteristics such as surface finish and dimensional tolerances are not covered in this standard.
Metals Technical Committee
Materials scientists from North Carolina State University, Raleigh, NC, and Qatar University have developed a new high-entropy metal alloy that, they say, has a higher strength-to-weight ratio than any other existing metal material. High-entropy alloys consist of five or more metals in roughly equal amounts. The researchers say that strong, lightweight materials, may be very useful in prosthetic devices, as well as many other uses.
Items per page:
1 – 50 of 212