Browse Topic: Foams
This SAE Recommended Practice is applicable for determining the cold characteristics of flexible plastic materials, as applicable. It consists of three different methods for determining low-temperature properties of materials depending on type of material and end use. The method used shall be as specified by the contractual parties.
Advanced composite materials processable by cost-effective manufacturing play an important role in developing lightweight structures for future space and planetary exploration missions. With the growing demand for improved performance in the aerospace sector, advances in polymer systems with extreme thermomechanical properties are critical in providing excellent retention of performance in high-temperature environments, and high resistance to microcracking at cryogenic temperatures.
This innovation provides for significantly improved protection from micrometeoroid and orbital debris (MMOD) particles, and reliably determines the location, depth, and extent of MMOD impact damage.
The present invention addresses the effective dispersion of carbon nanotubes (CNTs) into polymer matrices. The nanocomposites are prepared using polymer matrices and exhibit a unique combination of properties, most notably, high retention of optical transparency in the visible range (i.e., 400 to 800 nm), electrical conductivity, and high thermal stability.
Today, medical devices are made using a variety of plastic materials and manufacturing processes. Advances in plastic processing make it possible to obtain virtually any shape, form, or function. In addition, the vast assortment of plastics available allows designers to design for the optimal balance of functionality, performance, and cost. Expanded polypropylene (EPP) is a plastic material that is starting to gain traction in the medical device market as product designers become more familiar with the multiple benefits it can provide.
Items per page:
50
1 – 50 of 249