Browse Topic: Composite materials

Items (2,249)
This document will contain guidance and considerations for the use of composite materials on non-primary structure for landing gear systems. Content to include design considerations, conditions and applications where composites are feasible/beneficial, high-level descriptions of various manufacturing processes, and certification/validation considerations.
A-5B Gears, Struts and Couplings CommitteeNEW
This information report provides general guidance for the design considerations, qualification in endurance, strength and fatigue of landing gear using composite components as principle structural elements. The information discussed herein includes the development and evaluation of design data considering: the potential for imbedded manufacturing defects, manufacturing process variations, the component operating environment, potential damage threats in service, rework and overhaul, and inspection processes. This AIR mainly discusses the use of thick composites for landing gear structural components. Considerations and recommendations provided in this AIR may therefore differ greatly from considerations and recommendations found in widely accepted composite design references such as CMH-17 and Advisory Circulars such as AC 20-107(B).
A-5B Gears, Struts and Couplings CommitteeNEW
This specification covers a dilute aluminum/TiB2 metal matrix composite in the form of sand castings.
AMS D Nonferrous Alloys Committee
This specification covers a dilute aluminum/TiB2 metal matrix composite in the form of investment castings.
AMS D Nonferrous Alloys Committee
ABSTRACT The authors studied the effects of different types of armor on the performance of spin-torque microwave detectors (STMD). Working prototypes of novel nano-sized spintronic sensors of microwave radiation for battlefield anti-radar and wireless communications applications are being integrated into Sensor Enhanced Armor (SEA) and Multifunctional Armor (MFA) and tested in SEA-NDE Lab at TARDEC. The preliminary theoretical estimations have shown that STMD based on the spin-torque effect in magnetic tunnel junctions (MTJ), when placed in the external electromagnetic field of a microwave frequency, can work as diode detectors with the maximum theoretical sensitivity of 1000 V/W. These STNO detectors could be scaled to sub-micron size, are frequency-selective and tunable, and are tolerant to ionizing radiation. We studied the performance of a STMD in two different dynamical regimes of detector operation: in well-known traditional in-plane regime of STMD operation and in recently
Bankowski, ElenaMeitzler, ThomasPesys, Tomas
Abstract In subsonic aircraft design, the aerodynamic performance of aircraft is compared meaningfully at a system level by evaluating their range and endurance, but cannot do so at an aerodynamic level when using lift and drag coefficients, CL and CD , as these often result in misleading results for different wing reference areas. This Part I of the article (i) illustrates these shortcomings, (ii) introduces a dimensionless number quantifying the induced drag of aircraft, and (iii) proposes an aerodynamic equation of state for lift, drag, and induced drag and applies it to evaluate the aerodynamics of the canard aircraft, the dual rotors of the hovering Ingenuity Mars helicopter, and the composite lifting system (wing plus cylinders in Magnus effect) of a YOV-10 Bronco. Part II of this article applies this aerodynamic equation of state to the flapping flight of hovering and forward-flying insects. Part III applies the aerodynamic equation of state to some well-trodden cases in fluid
Burgers, Phillip
In subsonic aircraft design, the aerodynamic performance of aircraft is compared meaningfullyby evaluating their range and endurance, but cannot do so atwhen using lift and drag coefficients,and, as these often result in misleading results for different wing reference areas. This Part I of the article (i) illustrates these shortcomings, (ii) introduces a dimensionless number quantifying the induced drag of aircraft, and (iii) proposes anfor lift, drag, and induced drag and applies it to evaluate the aerodynamics of the canard aircraft, the dual rotors of the hoveringMars helicopter, and the composite lifting system (wing plus cylinders in Magnus effect) of a YOV-10. Part II of this article applies this aerodynamic equation of state to the flapping flight of hovering and forward-flying insects. Part III applies the aerodynamic equation of state to some well-trodden cases in fluid mechanics found in fluid-mechanics textbooks.
Burgers, Phillip
This SAE Recommended Practice is applicable for determining the cold characteristics of flexible plastic materials, as applicable. It consists of three different methods for determining low-temperature properties of materials depending on type of material and end use. The method used shall be as specified by the contractual parties.
Textile and Flexible Plastics Committee
Items per page:
1 – 50 of 2249