Browse Topic: Storage
This invention accommodates the volume expansion and contraction of water ice as it freezes and thaws, thus enabling the use of water as a phase change material (PCM) for thermal energy storage. Due to the relatively large volume expansion of water upon freezing, and the relatively large bulk modulus of elasticity of ice, it is imperative to accommodate the volume expansion in order to prevent rupture of the containment vessel. In addition to accommodating the volume expansion associated with the phase change from liquid water to solid ice, this invention is usable at temperatures as low as –150 °C, thus enabling the ice to be super-cooled for additional sensible thermal storage capacity. Finally, this invention operates independent of gravity, enabling its use in space applications.
Leukocytes respond to toxic, infectious, and inflammatory processes to defend tissues and eliminate disease process or toxic challenge. Accurate and prompt counting and differentiation of leukocytes is critical for diagnoses of infection, leukemia, or allergy; monitoring bone marrow function; or monitoring the body’s response to various treatments. White blood cell (WBC), or leukocyte, differential count is a clinical analysis that numerates the total number of leukocytes in per volume blood, and classifies leukocytes into different types, such as lymphocytes, monocytes, neutrophils, eosinophils, and basophils.
Current RHBD electronics are limited to speeds that approximate 250 MHz, regardless of the electronic process. The fact that determines the final speed is based on the nature of the current SEU (single-event upsets) radiation-tolerant latches, and the data flow between the latches through combinational logic.
Improvements in brine water recovery are critical to advancing NASA’s goals for human exploration of space. Water recovery systems must minimize the need for new supplies of clean water by closing the water loop. To accomplish this, water losses must be minimized or eliminated. A major loss of water is the brine produced by the primary water processor. For current technologies, this loss can be up to 15%.
This technique allows for rapid joining of reconfigurable structures. Currently, permanent structural joints are made in factory settings or in situ. However, reconfigurable structures require appropriate structural joints that must be made in situ, and must join/disjoin without inflicting any damage on the structure or the joint. The joining/disjoining operation must be rapid and repeatable without damaging the structure.
Items per page:
50
1 – 50 of 280