Surfaces of components can be arbitrarily shaped to optimize spectral responses. NASA’s Jet Propulsion Laboratory, Pasadena, California It is now possible to fashion transparent crystalline materials into axisymmetric optical components having diameters ranging from hundreds down to tens of micrometers, whereas previously, the smallest attainable diameter was 500 μm. A major step in the fabrication process that makes this possible can be characterized as diamond turning or computer numerically controlled machining on an ultrahigh-precision lathe. This process affords the flexibility to make arbitrary axisymmetric shapes that have various degrees of complexity: examples include a flat disk or a torus supported by a cylinder (see figure), or multiple closely axially spaced disks or tori supported by a cylinder. Such optical components are intended mainly for use as whispering-gallery-mode optical resonators in diverse actual and potential applications, including wavelength filtering