Browse Topic: Diagnostics

Items (160)
This SAE Recommended Practice is applicable to all E/E systems on MD and HD vehicles. The terms defined are largely focused on compression-ignited and spark-ignited engines. Specific applications of this document include diagnostic, service and repair manuals, bulletins and updates, training manuals, repair data bases, under-hood emission labels, and emission certification applications. This document focuses on diagnostic terms, definitions, abbreviations, and acronyms applicable to E/E systems. It also covers mechanical systems which require definition. Nothing in this document should be construed as prohibiting the introduction of a term, abbreviation, or acronym not covered by this document. The use and appropriate updating of this document is strongly encouraged. Certain terms have already been in common use and are readily understood by manufacturers and technicians, but do not follow the methodology of this document. These terms fall into three categories: a Acronyms that do not
Truck Bus Control and Communications Network Committee
This Technical Information Report defines the diagnostic communication protocol TP2.0. This document should be used in conjunction with SAE J2534-2 in order to fully implement the communication protocol in an SAE J2534 interface. Some Volkswagen of America and Audi of America vehicles are equipped with ECU(s), in which a TP2.0 proprietary diagnostic communication protocol is implemented. The purpose of this document is to specify the requirements necessary to implement the communication protocol in an SAE J2534 interface.
Vehicle E E System Diagnostic Standards Committee
There exist many datasets that can be viewed as multivariate time series, such as the daily high temperature at a locality, sensor recordings in diagnostic systems and scientific data, and music and video recordings. These time series reside in large repositories, and there is often a need to search for particular time series exhibiting certain types of behaviors. Many current approaches to time series search are too slow on large repositories, or constrain the range of possible queries.
Scientists in field laboratories who diagnose and deal with Ebola infections often work under challenging conditions. Researchers at the German Primate Center have developed Diagnostics-in-a-Suitcase, which contains all reagents and equipment to detect the Ebola virus within 15 minutes at point-of-need. Moreover, the mobile suitcase laboratory will be operated by an integrated solar panel and a power pack.
Aerosols in planetary atmospheres have a significant impact on the energy balance of the planets, yet are often poorly characterized. An in situ instrument was developed that would provide more diagnostic information on the nature of aerosols it encountered if deployed on a planetary descent probe. Previous probe instruments only measured intensity phase functions, but much particle ambiguity remains with only this information. Adding the polarization phase function greatly reduces particle characteristic ambiguities, but also adds more challenges in designing a measurement approach. Laboratory instrumentation to measure intensity and polarization phase functions have existed since the early 1970s, but these instruments employed quarter-wave plates and Pockels cells to modulate the illuminating beam and the scattered light to isolate the intensity and polarization phase functions. Both of these components are unstable except under tightly controlled thermal conditions. This solution
Items per page:
1 – 50 of 160