Browse Topic: Liquefied petroleum gas
Innovators at NASA’s Armstrong Flight Research Center have developed a highly accurate method for measuring liquid levels using optical fibers. Unlike liquid level gauges currently on the market that rely on discrete measurements to give broad approximations of liquid levels, Armstrong’s innovative fiber optic method provides precise and accurate measurements. Specifically, Armstrong’s novel method is capable of providing measurements at 1/4-inch intervals within a tank. This significant leap forward in precision and accuracy in liquid level sensing offers significant benefits to many industries. Originally designed by NASA to monitor a rocket’s cryogenic fuel levels, this technology can be used in many medical, industrial, and pharmaceutical applications.
A multi-functional composite laminate material has been developed for structural and thermal applications for use in durable cryogenic fuel tanks for transportation vehicles and/or in the construction of habitats. The technology focuses on aerogel and fiber composites integrated into unique layups with thermal and mechanical energy absorption capabilities. The lightweight laminate composite system has multi-functionality for both high- and low-temperature applications. Combining structural and thermal attributes, the innovation is a lightweight aerogel-fiber laminate composite system with good compressive strength, tailorable for impact and acoustic energy absorption, reduced heat transfer, and/or fire barrier properties.
Items per page:
50
1 – 50 of 115