Browse Topic: Methane

Items (123)
The sooting propensity of dual-fuel combustion with n-dodecane pilot injection in a lean-premixed methane-air charge has been investigated using an optically accessible Rapid Compression-Expansion Machine (RCEM) to achieve engine-relevant pressure and temperature conditions at the start of pilot injection. A Diesel injector with a 100 μm single-hole coaxial nozzle, mounted at the cylinder periphery, has been employed to admit the pilot fuel. The aim of this study was to enhance the fundamental understanding of soot formation and oxidation processes of n-dodecane in the presence of methane in the air charge by parametric variation of methane equivalence ratio, charge temperature, and pilot fuel injection duration. The influence of methane on ignition delay and flame extent of the pilot fuel jet has been determined by simultaneous excited-state hydroxyl radical (OH*) chemiluminescence and Schlieren imaging. The sooting behavior of the flame has been characterized using the 2D-DBI imaging
Srna, AlešBruneaux, Gillesvon Rotz, BeatBombach, RolfHerrmann, KaiBoulouchos, Konstantinos
Converting in-situ resources such as CO2, which is the main component of the Mars atmosphere, into methane for rocket propellants can significantly reduce the cost and risk of human exploration while at the same time enabling new mission concepts and long-term exploration sustainability. Methanation of CO2, also called a Sabatier reaction, is hence a key enabling technology required for sustainable and affordable human exploration of Mars.
A lake and shore sampling and sample distribution system was developed for a Titan lake environment (93.7 K, in liquid hydrocarbons). The Titan Lake and Shore Sampler (TLASS) would enable the chemical analysis of hydrocarbon lake samples via a Dual Rectilinear Ion and Orbitrap Mass Spectrometer and Nuclear Magnetic Resonance (NMR) Spectrometry.
Items per page:
1 – 50 of 123