Browse Topic: Wind power

Items (94)
The numerical analysis of the three-dimensional (3D) flow over a National Advisory Committee for Aeronautics (NACA) 6321 airfoil to evaluate the mass flow rate by using a novel method Improved Blowing and Suction System (IBSS) to control the boundary layer is presented in this study. Analysis is performed based on 3D Reynolds-Averaged Navier-Stokes (RANS) equation with a K-omega SST solver. The aerodynamic performance of the NACA 6321 is analyzed at a Mach number of 0.10 with three different mass flow rates, namely, 0.08 kg/s, 0.10 kg/s, and 0.12 kg/s. From the study, it is seen that when the mass flow rate decreased, the aerodynamics performance also reduced, and the aerodynamic performance improved with the increase in mass flow rate. Results also show that a mass flow rate of 0.10 kg/s improved the stalling angle of attack (AoA) by 60% and coefficient of lift (CL) by 50%, enabling optimum efficiency of the aircraft wing in all aspects compared to the baseline airfoil model. The mass
Karuppiah, BalajiWessley, Jims John
A local energy source is desired for near-shore and offshore applications. Gas generators, diesel generators, and long-length submerged power cables tend to be expensive. A proposed solution is to use offshore wind with some type of energy storage mechanism for up to 1 GW-h. Energy storage in batteries is too expensive and massive, and subsea compressed air energy storage (CAES) has not been proven for very deep depths. Furthermore, CAES involves very great temperature changes that result in large inefficiencies.
In the early 1990s, NASA was planning for an extended stay on Mars, and scientists at Ames Research Center were concentrating efforts on creating a complete ecological system to sustain human crew-members during their time on the Red Planet. The group started looking at maximizing energy efficiency and alternative methods to make power on a planet that is millions of miles from Earth. They turned to a hybrid concept combining two renewable sources: wind and solar power technologies. Large surface temperature swings on Mars produce windy conditions; extreme examples are the frequent dust storms that can block nearly all sunlight.
Items per page:
1 – 50 of 94