Browse Topic: Lubricating oils

Items (558)
Abstract At present, it is generally considered in the analysis of the secondary motion of engine piston that the piston skirt–cylinder liner friction pair is fully lubricated in an engine operating cycle. However, in practice, when the piston moves upward, the amount of lubricating oil at the inlet may not ensure that the friction pair is fully lubricated. In this article, the secondary motion of piston is studied when the transport of lubricating oil is considered to determine the lubrication condition of piston skirt–cylinder liner friction pair. The secondary motion of piston is solved based on the combined piston motion model, hydrodynamic lubrication model, asperity contact model, and lubricating oil flow model. The secondary motion equation of piston is solved by the Broyden method. The hydrodynamic lubrication equation is solved by the finite difference method. The asperity contact between piston skirt and cylinder liner is calculated by the Greenwood model. The flow of
Liu, JihaiSun, Jun
This SAE Standard establishes a uniform procedure and performance requirements for snowmobile fuel tanks.
Snowmobile Technical Committee
This SAE Standard defines the limits for a classification of engine lubricating oils in rheological terms only. Other oil characteristics are not considered or included.
Fuels and Lubricants TC 1 Engine Lubrication
The gear lubricants covered by this standard exceed American Petroleum Institute (API) Service Classification API GL-5 and are intended for hypoid-type, automotive gear units, operating under conditions of high-speed/shock load and low-speed/high-torque. These lubricants may be appropriate for other gear applications where the position of the shafts relative to each other and the type of gear flank contact involve a large percentage of sliding contact. Such applications typically require extreme pressure (EP) additives to prevent the adhesion and subsequent tearing away of material from the loaded gear flanks. These lubricants are not appropriate for the lubrication of worm gears. Appendix A is a mandatory part of this standard. The information contained in Appendix A is intended for the demonstration of compliance with the requirements of this standard and for listing on the Qualified Products List (QPL) administered by the Lubricant Review Institute (LRI). Appendix A contains a
Fuels and Lubricants TC 3 Driveline and Chassis Lubrication
This SAE Standard establishes the requirements for nondispersant, mineral lubricating oils to be used in four-stroke cycle piston aircraft engines. This document covers the same lubricating oil requirements as the former military specification MIL-L-6082. Users should consult their airframe or engine manufacturers manuals for the latest listing of acceptable lubricants.
E-38 Aviation Piston Engine Fuels and Lubricants
This SAE Recommended Practice describes an empirical method for determining the theoretical ash content of aviation piston engine lubricating oils by calculating the equivalent weight of metallic oxides formed at 775 °C based on the metallic elemental concentration. The calculation method of ash determination may be used as an alternate to ASTM D 482 for application to the standards for aviation piston engine lubricating oils.
E-38 Aviation Piston Engine Fuels and Lubricants
This specification establishes requirements for a standard contaminant that can be used to represent typical soils encountered in aerospace cleaning. This standard contaminant consists of materials that are common contaminants found in aircraft maintenance depots and manufacturing facilities.
AMS G9 Aerospace Sealing Committee
Designing fuel economy lubricants is an art; finding the right balance between fuel economy and durability requirements is complex, with many trade-offs. To open new formulation spaces with ever increasing fuel economy, a deep understanding of how lubricating oils respond to different drive cycles, engine/transmission type and any coating properties, e.g. DLC, is required. In this paper, we describe how the implementation of WLTC requires lubricant optimization to deliver improved fuel economy under this test cycle and therefore, lubricant viscosity reduction becomes more important. We also illustrate optimization of the sludge system is key to reducing overall viscosity of lubricants for ultra low viscosity application, such as in SAE 0W- 8 viscosity grade oils. To meet the cleanliness challenges in an SAE 0W-8 environment, we describe a developmental sludge handling system with improved cleanliness at constant viscosity to conventional SAE 0W-8 lubricants. A SAE 0W-8 demonstration
Matsui, TsuyoshiFeatherstone, ThomasWright, Peter
Items per page:
1 – 50 of 558