In general the mechanical design and function of synchronized manual transmissions has remained relatively constant over the years, with incremental improvements in components, gears, bearings, seals, synchronizers and fluids continuing to advance the quality of the overall product. Marketplace demands generally drive improvements which are primarily aimed at durability and shift quality. Recently, however, advances in control and actuation technology have led to a new generation of automated manual transmissions. As a result, compatibility with electronic and valve components is becoming increasingly important. The synchronizers and fluid are two components that can affect the overall transmission performance experienced by the end user. Historically, there has been a variety of synchronizer materials, primarily brass for smaller vehicles such as passenger cars and molybdenum-based products for larger commercial vehicles. Recently sinter compositions, carbon and also phenolic