Browse Topic: Gas turbine lubricants

Items (87)
This SAE Aerospace Information Report (AIR) contains data relative to the chemical nature of aerospace fluids and relates each to its empirical effect upon elastomeric components. Since the compatibilities of elastomers are determined by the compounding as well as the nature of the base polymer, the elastomers considered are limited to finished compounds for which material or performance specifications can be referenced.
A-6C2 Seals Committee
This standard establishes the dimensional and visual quality requirements, lot requirements and packaging and labeling requirements for O-rings molded from AMS7272 NBR rubber. It shall be used for procurement purposes.
A-6C2 Seals Committee
This method is intended to evaluate the thermal and oxidative stability of synthetic, ester-based aviation lubricants under defined conditions of time and temperature. This method is applicable to lubricants meeting the compositional and performance requirements of AS5780.
E-34 Propulsion Lubricants Committee
The lubricant performance capability for aero propulsion drive systems is derived from the physical properties of the oil and performance attributes associated with the chemical properties of the oil. Physical properties, such as viscosity, pressure-viscosity coefficient and full-film traction coefficient are inherent properties of the lubricating fluid. Chemical attributes are critical for the formation of protective boundary lubricating films on the surfaces to prevent wear and scuffing. These attributes are also associated with surface initiated fatigue (micropitting). To assure performance and to provide required information for engineering design, methodology for at least five oil properties are being studied: (1) pressure-viscosity coefficient, (2) full-film traction coefficient, (3) scuffing resistance, (4) wear resistance, and (5) micropitting propensity. The pressure-viscosity coefficient can be measured either directly by assessing viscosity as a function of pressure using
E-34 Propulsion Lubricants Committee
There has been a recent upsurge in interest from the media concerning the quality of the environment within aircraft cabins and cockpits especially in the commercial world1-4. This has included (although by no means been limited to) the air quality, with particular reference to the alleged effects of contamination from the aircraft turbine lubricant. Possible exposure to ‘organophosphates’ (OPs) from the oil has raised special concerns from cabin crew. Such is the concern that government organisations around the world, including Australia, USA and UK, have set up committees to investigate the cabin air quality issue. Concern was also voiced in the aviation lubricants world at the way in which OP additives in turbine lubricants were being blamed in some reports for the symptoms being experienced by air crew and passengers. SAE Committee E-34 therefore decided that it should gather as much available information on the subject as possible. This would then enable E-34 to participate in
E-34 Propulsion Lubricants Committee
The test method describes the procedure for determination of the total acid number of new and degraded polyol ester and diester based gas turbine lubricants by potentiometric titration technique. The method was validated to cover an acidity range 0.05 to 6.0 mg KOH g-1. The method may also be suitable for the determination of acidities outside of this range and for other classes of lubricant.
E-34 Propulsion Lubricants Committee
This Core Specification is intended as a standardization document for the basic performance requirements for 5 cSt grade aircraft gas turbine engine lubricants. It will be subject to change to keep pace with experience and technical advances.
E-34 Propulsion Lubricants Committee
Items per page:
1 – 50 of 87