Browse Topic: Vehicle to vehicle (V2V)

Items (452)
ABSTRACT A simulation capable of modeling grid-tied electrical systems, vehicle-to-grid (V2G) and vehicle-to-vehicle(V2V) resource sharing was developed within the MATLAB/Simulink environment. Using the steady state admittance matrix approach, the unknown currents and voltages within the network are determined at each time step. This eliminates the need for states associated with the distributed system. Each vehicle has two dynamic states: (1) stored energy and (2) fuel consumed while the generators have only a single fuel consumed state. One of its potential uses is to assess the sensitivity of fuel consumption with respect to the control system parameters used to maintain a vehicle-centric bus voltage under dynamic loading conditions.
Jane, Robert S.Parker, Gordon G.Weaver, Wayne W.Goldsmith, Steven Y.
With the development of cellular communication technology and for the sake of reducing drag resistance, the multi-lane platoon technology will be more prosperous in the future. In this article, the cooperative vehicle platoon method on the public road is represented. The method’s architecture is mainly composed of the following parts: decision-making, path planning and control command generation. The decision-making uses the finite state machine to make decision and judgment on the cooperative lane change of vehicles, and starts to execute the lane change step when the lane change requirements are met. In terms of path planning, with the goal of ensuring comfort, the continuity of the vehicle state and no collision between vehicles, a fifth-order polynomial is used to fit every vehicle trajectory. In terms of control command generation module, a model predictive control algorithm is used to solve the multi-vehicle centralized optimization control problem. We use the two DOF vehicle
Chen, GuoshengWu, JianLi, ShuaiZhang, JinghuaDu, ZhiqiangWang, GuojunChen, Zhicheng
This specification covers two types of refined hydrocarbon compounds in the form of liquids. This specification only covers newly manufactured materials.
AMS K Non Destructive Methods and Processes Committee
Automated vehicles require some level of subsystem redundancy, whether to allow a transition time for driver re-engagement (L3) or continued operation in a faulted state (L4+). Highly automated vehicle developers need to have safe miles accumulated by vehicles to assess system maturity and experience new environments. This article presents a conceptual framework suggesting that hardware newly available to commercial vehicle application can be used to form a steering system that will remain operational upon a failure. The key points of a provisional safety case are presented, giving hope that a complete safety case is possible. This article will provide autonomous vehicle developers a view of a near term possibility for a highly automated commercial vehicle steering solution.
Pandy, AnandaPathuri, NagamaniSalunke, PranavSubba, Srujana SreeWilliams, Dan
This document provides dimensional definitions that facilitate geometric quantification and evaluation of seats. Linear, radial, and angular surface dimensions included in this document are intended to approximate shape characteristics based on defined points of interest and not as a method needed to reproduce complex surface contours. In many cases, other points across the seat surface shape may exceed or not reach the boundary defined by these simple geometric definitions. Dimensions described in this document have been designed to be measured in a CAD environment; however, many dimensions require the HPD position and attitude. This can be obtained by physically establishing H-point using benchmark or auditing procedures OR by measuring the HPD within a CAD or modelling system. Refer to the appropriate document for these procedures. Three types of seat geometry reference points and measurements have been developed: 1 Simple reference points and measurements not related to H-point. 2
Human Accom and Design Devices Stds Comm
This document establishes the minimum training and qualification requirements for ground-based aircraft deicing/anti-icing methods and procedures. All guidelines referred to herein are applicable only in conjunction with the applicable documents. Due to aerodynamic and other concerns, the application of deicing/anti-icing fluids shall be carried out in compliance with engine and aircraft manufacturers’ recommendations. The scope of training should be adjusted according to local demands. There are a wide variety of winter seasons and differences of the involvement between deicing operators, and therefore the level and length of training should be adjusted accordingly. However, the minimum level of training shall be covered in all cases. As a rule of thumb, the amount of time spent in practical training should equal or exceed the amount of time spent in classroom training.
G-12T Training and Quality Programs Committee
Items per page:
1 – 50 of 452