Browse Topic: On-board diagnostics (OBD)

Items (245)
Vehicles equipped with Level 4 and 5 autonomy will need to be tested according to regulatory standards (or future revisions thereof) that vehicles with lower levels of autonomy are currently subject to. Today, dynamic Federal Motor Vehicle Safety Standards (FMVSS) tests are performed with human drivers and driving robots controlling the test vehicle’s steering wheel, throttle pedal, and brake pedal. However, many Level 4 and 5 vehicles will lack these traditional driver controls, so it will be impossible to control these vehicles using human drivers or traditional driving robots. Therefore, there is a need for an electronic interface that will allow engineers to send dynamic steering, speed, and brake commands to a vehicle. This paper describes the design and implementation of a market-ready Automated Driving Systems (ADS) Test Data Interface (TDI), a secure electronic control interface which aims to solve the challenges outlined above. The interface consists of a communication port
Zagorski, ScottNguyen, AnHeydinger, GaryAbbey, Howard
This SAE Aerospace Recommended Practice (ARP) sets forth criteria for the installation, inflation, inspection, and maintenance of aircraft tires and the maintenance of the operating environment to ensure the safety of support personnel and the safe operation of the aircraft.
A-5C Aircraft Tires Committee
This document describes the application of the SAE J1939 recommended practices for compliance with on-board diagnostic malfunction detection system requirements for marine sterndrive and inboard spark ignition engines, as mandated by the California Air Resources Board (CARB). These Otto-cycle engines are not derived from automotive diesel-cycle engines.
Truck Bus Control and Communications Network Committee
Existing on-board diagnostics vehicle systems can detect the existence of faults, but their diagnostic (fault isolation) capabilities are rather low. Extensions to on-board diagnostics are needed in order to provide a high degree of automated diagnostic support. In this context, we study in this article the problem of internal combustion engine misfires, which constitute a class of automotive faults known to be difficult to diagnose, and present a combination classifier that has excellent performance in classifying the various root causes of misfire faults. We first obtained real-life data and built a database consisting of 2,299 time instances of actual misfire and misfire-free cases. Fault data were captured on several different vehicle makes and models, with each misfire fault belonging to one of three different categories (air-intake, coil-ignition, and fuel-injection), further subdivided into a total of seven subcategories. We then developed a combination classifier (referred to
Suda, Jessica L.Kagaris, Dimitri
This terminology aims to encompass all terms and definitions pertaining to the road performance of pneumatic tires designed for over-the-highway use, such as passenger car, light truck, truck and bus, and motorcycle tires. Not included are terms specific to the performance of agricultural, aircraft, industrial, and other off-highway tires. However, many terms contained in this document also apply to non-highway tires.
Highway Tire Committee
Items per page:
1 – 50 of 245