Browse Topic: Light emitting diodes (LEDs)

Items (677)
This SAE Recommended Practice covers the requirements for ethernet physical layer (PHY) qualification. Requirements stated in this document provide a minimum standard level of performance for the PHY in the IC to which all compatible ethernet communications PHY shall be designed. When the communications chipset is an ethernet switch with an integrated automotive PHY (xBASE-T1), then the testing shall include performance for all switch PHY ports as well as each controller interface. No other features in the IC are tested or qualified as part of this SAE Recommended Practice. This assures robust serial data communication among all connected devices regardless of supplier. The goal of SAE J2962-3 is to commonize approval processes of ethernet PHYs across OEMs. The intended audience includes, but is not limited to, ethernet PHY suppliers, component release engineers, and vehicle system engineers.
Vehicle Architecture For Data Communications Standards
This SAE Standard provides test methods, performance requirements, installation requirements, and guidelines for snowmobile headlamps.
Snowmobile Technical Committee
This SAE Recommended Practice is intended as a guide toward standard practice and is subject to change to keep pace with experience and technical advances. This document provides standardized laboratory tests, test methods and equipment, and requirements for lighting devices covered by SAE Recommended Practices and Standards. It is intended for devices used on vehicles less than 2032 mm in width. Tests for vehicles larger than 2032 mm in overall width are covered in SAE J2139. Device specific tests and requirements can be found in applicable SAE technical reports.
Test Methods and Equipment Stds Committee
This SAE Standard provides requirements and test procedures for the daytime running light function (DRLF) and the lamps that provide it.
Signaling and Marking Devices Stds Comm
This SAE Standard provides test procedures, performance requirements, design guidelines, and installation guidelines for front fog lamps.
Road Illumination Devices Standards Committee
This article presents an approach for circumferential tire tread profiling using Laser Section (LS) technique and Photometric Stereo (PS) technique. The proposed approach uses a digital camera as the only data acquisition device, and one laser line generator and sixteen 5 mm white LEDs to provide different lighting conditions. LS technique uses the illumination of the laser line generator to measure the depth profile of one cross section of the tire surface, while PS technique utilizes the difference of the appearance of the tire surface under different lighting conditions to recover the geometry information of the tire tread with pixel resolution. The fusion of the two techniques results in a high-resolution three-dimensional (3D) profiling of the tire tread. A system to apply the proposed approach was developed, with the necessary calibration steps explained, with a step motor for circumferential measurement. The performance of the proposed approach was validated with a 225/60R16
Song, MengyuFurukawa, Tomonari
Items per page:
1 – 50 of 677