Browse Topic: Simulation and modeling

Items (7,570)
ABSTRACT A simulation capable of modeling grid-tied electrical systems, vehicle-to-grid (V2G) and vehicle-to-vehicle(V2V) resource sharing was developed within the MATLAB/Simulink environment. Using the steady state admittance matrix approach, the unknown currents and voltages within the network are determined at each time step. This eliminates the need for states associated with the distributed system. Each vehicle has two dynamic states: (1) stored energy and (2) fuel consumed while the generators have only a single fuel consumed state. One of its potential uses is to assess the sensitivity of fuel consumption with respect to the control system parameters used to maintain a vehicle-centric bus voltage under dynamic loading conditions.
Jane, Robert S.Parker, Gordon G.Weaver, Wayne W.Goldsmith, Steven Y.
Abstract Predicting airbag deployment geometries is an important task for airbag and vehicle designers to meet safety standards based on biomechanical injury risk functions. This prediction is also an extraordinarily complex problem given the number of disciplines and their interactions. State-of-the-art airbag deployment geometry simulations (including time history) entail large, computationally expensive numerical methods such as finite element analysis (FEA) and computational fluid dynamics (CFD), among others. This complexity results in exceptionally large simulation times, making thorough exploration of the design space prohibitive. This paper proposes new parametric simulation models which drastically accelerate airbag deployment geometry predictions while maintaining the accuracy of the airbag deployment geometry at reasonable levels; these models, called herein machine learning (ML)-accelerated models, blend physical system modes with data-driven techniques to accomplish fast
Valenzuela del Rio, Jose E.Lancashire, RichardChatrath, KaranRitmeijer, PeterArvanitis, ElenaMirabella, Lucia
The air-breathing hypersonic vehicle (AHV) holds the potential to revolutionize global travel, enabling rapid transportation to low-Earth orbit and even space within the next few decades. This study focuses on investigating the nonlinear dynamic simulation, trim, and stability analysis of a three-degrees-of-freedom (3DOF) longitudinal model of a generic AHV for variable control surface deflection,and. A simulation is developed to analyze the burstiness of the AHV’s nonlinear longitudinal behavior, considering the complete flight envelope across a wide range of Mach numbers, from= 0 to 24, for selected stable. The presented simulation assesses trim analysis and explores the dynamic stability of the AHV through its flight envelope and bifurcation method analysis is carried out to gain insight and validate the dynamic stability using eigen value approach.
Singh, RiteshPrakash, OmJoshi, SudhirSharma, Rakesh Chandmal
Items per page:
1 – 50 of 7570