Browse Topic: Heavy trucks

Items (1,405)
Aerodynamic interaction between vehicles on a roadway can modify the fuel use and greenhouse gas emissions of the vehicle relative to their performance under isolated, uniform-wind conditions. A comprehensive wind-tunnel study was undertaken to examine changes to the aerodynamic drag experienced by vehicles in close proximity, in adjacent lanes. Wind-load measurements were conducted for two general configurations: 15%-scale testing with light-duty-vehicle (LDV) models, and 6.7%-scale testing with a heavy-duty vehicle (HDV) model. For the LDV study, a DrivAer model was tested with a proximate AeroSUV model or an Ahmed model at lateral distances representing 75%, 100%, and 125% of a typical highway lane spacing, and for longitudinal distances up to 2 vehicle lengths forward and back. Commensurate measurements were conducted for the AeroSUV model with the proximate DrivAer or Ahmed model. For the HDV study, a tractor-trailer model was tested with a single or combination of adjacent-lane
McAuliffe, BrianBarber, Hali
This SAE Recommended Practice describes a laboratory test procedure and requirements for evaluating the characteristics of heavy-truck steering control systems under simulated driver impact conditions, as well as driver entry/egress conditions. The test procedure employs a torso-shaped body block that is impacted against the steering wheel.
Truck Crashworthiness Committee
This SAE Recommended Practice establishes uniform test procedures for friction based parking brake components used in conjunction with hydraulic service braked vehicles with a gross vehicle weight rating greater than 4500 kg (10 000 lb). The components covered in this document are the primary actuation and the foundation park brake. Various peripheral devices such as application dashboard switches or indicators are not included. These test procedures include the following: a Brake Related Tests 1 Brake Functional Performance 2 Brake Dynamic Torque Performance 3 Brake Corrosion Resistance 4 Brake Endurance with Torque 5 Brake Endurance without Torque 6 Vibration Resistance 7 Brake Ultimate Static Load 8 Brake Lining Wear Adjuster Function b Actuation Related Tests 1 Mechanical Actuator Functional Performance 2 Mechanical Actuator Endurance 3 Mechanical Actuator Quick Release 4 Mechanical Actuator Ultimate Load 5 Spring Apply Actuator Functional Performance 6 Spring Apply Actuator
Truck and Bus Hydraulic Brake Committee
This SAE Recommended Practice describes the test procedures for conducting simulated dynamic lateral rollover restraint system tests for heavy truck applications. Its purpose is to establish recommended test procedures that will standardize restraint system testing for heavy trucks. Descriptions of the test set-up, test instrumentation, photographic/video coverage, and the test fixtures are included.
Truck Crashworthiness Committee
This SAE Recommended Practice provides a standardized test procedure for heavy-duty truck sleeper berth restraints to determine whether they meet the FMCSR 393.76(h) requirements.
Truck Crashworthiness Committee
This SAE Standard establishes the minimum construction and performance requirements for single conductor cable for use on trucks, trailers, and converter dollies.
Truck and Bus Electrical Systems Committee
This SAE Recommended Practice is intended to describe the application of single-phase DC to AC inverters, and bidirectional inverter/chargers, which supply power to ac loads in Class heavy duty on-highway trucks (10K GVW). The document identifies appropriate operating performance requirements and adds some insight into inverter selection. This document applies to factory and after-market installed DC-to-AC inverter systems (Including inverter chargers) providing up 3000 W of 120 VAC line-voltage power as a convenience for operator and passenger use. Such inverters are intended to power user loads not essential to vehicle Operation or safety (e.g., HVAC, TV, microwave ovens, battery chargers for mobile phones or laptop computers, audio equipment, etc.). Systems incorporate the inverter itself as well as the input, output, control, and signal wiring associated with the inverter. Requirements are given for the performance, safety, reliability, and environmental compatibility of the system
Truck and Bus Electrical Systems Committee
This SAE Recommended Practice describes the test procedures for conducting frontal impact restraint tests for heavy truck applications. Its purpose is to establish recommended test procedures that will standardize restraint system testing for heavy trucks. Descriptions of the test set-up, test instrumentation, photographic/video coverage, and the test fixtures are included.
Truck Crashworthiness Committee
This study provides a simulation-based comparative analysis of the distance and time needed for long combination vehicles (LCVs) - namely, A-doubles with 28-, 33-, and 48-ft trailers - to safely exercise an emergency, evasive steering maneuver such as required for obstacle avoidance. The results are also compared with conventional tractor-semitrailers with a single 53-ft trailer. A multi-body dynamic model for each vehicle combination is developed in TruckSim® with an attempt to assess the last point to steer (LPTS) and evasive time (ET) at various highway speeds under both dry and wet road conditions. The results indicate that the minimum avoidance distance and time required for the 28-ft doubles vary from 206 ft (60 mph) to 312 ft (80 mph) and 2.3 s to 2.6 s, respectively. The required LPTS represents a 6% to 31% increase when compared with 53-ft semitrucks. When driving below 76 mph on a dry road and below 75 mph on a wet road, the 28-ft doubles exhibit LPTS and ET that are larger
Chen, YangZhang, ZichenAhmadian, Mehdi
Commercial vehicles often incorporate self-steering axles to meet the axle load requirements while providing improved maneuverability, reduced off-tracking, and reduced tire and pavement wear. Market forces promote the design of more efficient self-steering axle products with reduced weight and more features. Manufacturers also work to differentiate their products through unique designs and new concepts. Traditional design methods for self-steering axles include empirical and trial-and-error methods to set the steering mechanism design parameters based on known design baselines and prior experience. For innovative new concepts that are too far from the traditional designs, it is desirable to have alternative ways for evaluating the expected performance. This article introduces a reduced-order model that allows the rapid analysis of the steering dynamic behavior of self-steering axles. The model combines a pendulum-like lateral stiffness model with the axle steering dynamics which are
Delorenzis, DamonAyalew, Beshah
Items per page:
1 – 50 of 1405