Nowadays, the rapidly developing Connected and Autonomous Vehicle (CAV) provides a new mode of intersection vehicle cooperative control, which can optimize vehicle trajectories and signal phases in real time and reduce intersection delays through the advantages of vehicle-road cooperative information interaction and the high controllability of CAV. In this paper, the intersection of Jintong West Road and Guanghua Road in Beijing is taken as the research object, and the vehicle trajectory constraints, acceleration constraints, speed constraints, safe driving constraints, signal switch constraints and traffic signal control constraints are set up with the minimization of traffic delay as the objective function. The DQN deep reinforcement learning network is constructed based on vehicle states, vehicle actions, reward functions, and update rules, and starts learning and updating to generate the target network. Then, SUMO software is used to simulate and test and compare the trajectory