Browse Topic: Flight tests
This paper proposes a nonlinear observer for the estimation of gravity vector and angles with respect to velocity vector (flight path angle, bank angle) of a high-performance aircraft. The technique is computationally simpler than the extended Kalman filter (EKF) and hence is suitable for onboard implementations when the digital flight control computer (DFCC) has computational burdens. Flight test data of a highly maneuvering flight such as wind-up turns and full rolls have been used to validate the technique.
In this paper a cold soak fuel frost modeling for an aircraft wing tank is presented. Numerical prediction is compared with experimental data and a qualitative verification for the frost formation and melting is also shown. The numerical simulation showed good agreement with experimental observations. The model was used to define, through a Monte Carlo analysis, two different frost formations whose impact on aircraft handling was evaluated by flight tests using representative grits.
SAKOR Technologies has supplied a test system to Southwest Research Institute® (SwRI®) to be used to test the atmospheric flight control system for the Dream Chaser® spacecraft. Dream Chaser is a lifting-body, reusable, crewed or uncrewed vehicle. It is owned and operated by Sierra Nevada Corporation (SNC), and is designed as a space utility vehicle for low-Earth orbit.
Accurate measurements of airflow angles are among the most expensive and difficult to obtain in flight testing because of the complexity of the airflow near the aircraft and the consequent need to carefully mount and calibrate the sensors. A novel technique was developed for determining aerodynamic stability and control parameters from flight data in real time, without airflow angle measurements (airflow angle and sideslip angle).
Items per page:
50
1 – 50 of 203