Browse Topic: Solar rocket engines
Existing scientific research balloons such as those launched from Wallops Flight Facility could be placed in near- Earth space where they would perform as solar sails, providing relatively inexpensive propulsion systems for interplanetary missions. The balloons would accelerate at rates comparable with the ion drive performance of the NASA Dawn spacecraft, so they would enable unprecedented low-cost access to interplanetary space.
Sunlight can be reflected into permanently shadowed regions (PSRs) using S/C solar sails in order to detect and confirm the presence and distribution of water ice cold-trapped in PSRs in lunar polar craters. This reflected light is then viewed with an optical spectrometer.
This work describes a discontinuous or segmented mirror whose overall flatness is less dependent on the limited tension that can be supplied by the booms. A solar sail is a large, nominally flat sheet of extremely thin reflectorized film rigidly attached to a spacecraft, enabling propulsion via solar radiation pressure. Rip-stop fibers embedded in the backside of the film — with diameters ≈100× the thickness of the film — are commonly used to arrest tear propagation, which can easily occur in the handling and/or deployment of these gossamer-thin structures. Typically, the thin film or membrane that is the sail is systematically folded to enable both volumetrically compact transportation to space and mechanized deployment. It is the aggressive folding and creasing of the thin film that limits the ultimate flatness that can be achieved.
A new method has been developed to create coherent laser light efficiently with direct optical coupling of the Sun’s energy into the gain medium for multiple uses. New advances in solar cell photovoltaic (PV) technologies have greatly improved their efficiencies, mostly by improving their ability to convert many wavelengths or wider bands of the solar spectrum to electricity. New advances in actively doped fibers and optical glasses have been shown to produce very broad, multi-line absorption bands as well as stimulated emission lines, or laser lines. By designing the optical cavity system to feed back all emission bands into the gain media for amplification, a multi-wavelength source can be generated requiring no electronics.
A report describes upgraded CubeSat satellite elements for the interplanetary environment, with solar sail propulsion and the interplanetary superhighway for navigation and maneuvering. They can host small, capable instruments and optical telecommunications on a mission to map the composition of a sequence of near-Earth asteroids and planetary bodies.
Items per page:
50
1 – 25 of 25