Browse Topic: Liquid propellant rocket engines
Liquid rocket engine injectors can be extremely expensive to manufacture and hard to iterate to achieve high performance. Internal sealing points can also be the source of reliability issues. The technology disclosed here covers the application of a 3D additive manufacturing (AM) process to produce a functional aluminum injector for liquid propellant rocket engines, along with injector and overall engine design features that optimize the application of such processes to improve performance, reliability, and affordability relative to components produced using standard machining processes and designs. Aluminum was used for the injector instead of higher- temperature metals like stainless steel because its thermal conductance properties provide more opportunity to leverage the cooling potential of liquid oxygen and other cryogenic propellants.
A high-fidelity numerical simulation software (CRUNCH CFD®) predicts the transient performance of flight valve designs, provides design support by supplementing current empirical rules, and diagnoses system anomalies. Currently, transient analysis of valves is difficult to simulate because of the requirement to dynamically deform the grid due to the valve motion. For complex, transient problems such as engine startup or shutdown that also involve dynamic sealing of fluid flow paths due to valve/solid surface contact, it becomes nearly impossible to deform the grid in an automated fashion.
The primary objective of this document is to describe the systematic and random measurement uncertainties which may be expected when testing gas turbine engines in a range of different test facilities. The documentation covers a "traditional" method for estimating pretest uncertainties and a "new" method for computing and comparing posttest uncertainties. To determine these posttest uncertainties, data generated during the AGARD Uniform Engine Test Program (UETP) were analyzed and compared to the pretest estimates. The proposed procedure provides a mechanism for determining the expected accuracy of test results obtained from facilities which were not previously cross calibrated. Furthermore, the method can be used to assist in making cost-effective management decisions on the level of validation/cross calibration necessary when bringing a test facility on line. This document is also intended to act as a guide for improving uncertainty analyses in a broad spectrum of related industries
Items per page:
50
1 – 50 of 102