Browse Topic: Risk management

Items (305)
Automated vehicles, in the form we see today, started off-road. Ideas, technologies, and engineers came from agriculture, aerospace, and other off-road domains. While there are cases when only on-road experience will provide the necessary learning to advance automated driving systems, there is much relevant activity in off-road domains that receives less attention. Implications of Off-road Automation for On-road Automated Driving Systems argues that one way to accelerate on-road ADS development is to look at similar experiences off-road. There are plenty of people who see this connection, but there is no formalized system for exchanging knowledge. Click here to access the full SAE EDGETM Research Report portfolio.
This Standard specifies the Habitability processes throughout planning, design, development, test, production, use and disposal of a system. Depending on contract phase and/or complexity of the program, tailoring of this standard may be applied. The primary goals of a contractor Habitability program include: Ensuring that the system design complies with the customer Habitability requirements and that discrepancies are reported to management and the customer. Identifying, coordinating, tracking, prioritizing, and resolving Habitability risks and issues and ensuring that they are: ○ Reflected in the contractor proposal, budgets, and plans ○ Raised at design, management, and program reviews ○ Debated in Working Group meetings ○ Coordinated with Training, Logistics, and the other HSI disciplines ○ Included appropriately in documentation and deliverable data items Ensuring that Habitability requirements are applied to all personnel environments, including operators, maintainers, trainers
G-45 Human Systems Integration
This Engineering Bulletin and its annexes provide guidance on the application of Human Engineering principles and practices to the analysis, design, development, testing, fielding, support, accident investigation, and training for military and commercial products throughout their intended life cycles.
G-45 Human Systems Integration
The purpose of this Standard is to support the development and improvement of systems engineering capability.
G-47 Systems Engineering
The purpose of this Standard is to provide an integrated set of fundamental processes to aid a developer in the engineering or reengineering of a system. Use of this Standard is intended to help developers a) establish and evolve a complete and consistent set of requirements that will enable delivery of feasible and cost-effective system solutions; b) satisfy requirements within cost, schedule, and risk constraints; c) provide a system, or any portion of a system, that satisfies stakeholders over the life of the products that make up the system. NOTE—The term product is used in this standard to mean: a physical item, such as a satellite (end product), or any of its component parts (end products); a software item such as a stand-alone application to run within an existing system (end product); or a document such as a plan, or a service such as test, training, or maintenance support, or equipment such as a simulator (enabling products). d) provide for the safe and/or cost-effective
G-47 Systems Engineering
This SAE EDGE™ Research Report builds a comprehensive picture of the current state-of-the-art of human-robot applications, identifying key issues to unlock the technology’s potential. It brings together views of recognized thought leaders to understand and deconstruct the myths and realities of human- robot collaboration, and how it could eventually have the impact envisaged by many.Current thinking suggests that the emerging technology of human-robot collaboration provides an ideal solution, combining the flexibility and skill of human operators with the precision, repeatability, and reliability of robots. Yet, the topic tends to generate intense reactions ranging from a “brave new future” for aircraft manufacturing and assembly, to workers living in fear of a robot invasion and lost jobs.It is widely acknowledged that the application of robotics and automation in aerospace manufacturing is significantly lower than might be expected. Reasons include product variability, size, design
Webb, PhilipFletcher, Sarah
This Standard covers Manpower and Personnel (M&P) processes throughout planning, design, development, test, production, use, and disposal of a system. Depending on contract phase and/or complexity of the program, tailoring can be applied. The scope of this standard includes Prime and Sub-contractor M&P activities; it does not include Government M&P activities. The primary goals of a contractor M&P program typically include: Ensuring that the system design complies with the latest customer manpower estimates (numbers and mix of personnel, plus availability) and that discrepancies are reported to management and the customer. Ensuring that the system design is regularly compared to the latest customer Personnel estimates (capabilities and limitations) and that discrepancies are reported to management and the customer. Identifying, coordinating, tracking, and resolving M&P risks and issues and ensuring that they are: ○ Reflected in the contractor proposal, budgets, and plans. ○ Raised at
G-45 Human Systems Integration
This document applies to the development of Plans for integrating and managing COTS assemblies in electronic equipment and Systems for the commercial, military, and space markets; as well as other ADHP markets that wish to use this document. For purposes of this document, COTS assemblies are viewed as electronic assemblies such as printed wiring assemblies, relays, disk drives, LCD matrices, VME circuit cards, servers, printers, laptop computers, etc. There are many ways to categorize COTS assemblies1, including the following spectrum: At one end of the spectrum are COTS assemblies whose design, internal parts2, materials, configuration control, traceability, reliability, and qualification methods are at least partially controlled, or influenced, by ADHP customers (either individually or collectively). An example at this end of the spectrum is a VME circuit card assembly. At the other end of the spectrum are COTS assemblies whose design, internal parts, materials, configuration control
APMC Avionics Process Management
The purpose of this document is to provide detailed requirements to preclude the use of suspect counterfeit or counterfeit fasteners. The requirements of this document are intended to supplement the requirements of a higher-level quality standard (e.g., AS/EN/JISQ9100, ISO 9001, ANSI/ASQC E4, ASME NQA-1, AS9120, AS9003, and ISO/TS 16949 or equivalent) and other quality management system documents. Fasteners are defined as United States Federal Supply Classification Group codes as shown in the following list: This document applies to metallic and non-metallic components that mechanically attach two or more objects: fasteners, screws, bolts, rivets (blind, solid, tubular), inserts, washers, nuts, latching handles, clamps, pins, nails, retainers, etc. If locking or treatment elements such as glue, adhesives, anti-galling, lubricant, or other materials are part of the fastener specifications, then those items are within the scope of this document. For metallic raw materials used in the
G-21 Counterfeit Materiel Committee
Unsettled Topics in Automated Vehicle Data Sharing for Verification and Validation Purposes discusses the unsettled issue of sharing the terabytes of driving data generated by Automated Vehicles (AVs) on a daily basis. Perception engineers use these large datasets to analyze and model the automated driving systems (ADS) that will eventually be integrated into future “self-driving” vehicles. However, the current industry practices of collecting data by driving on public roads to understand real-world scenarios is not practical and will be unlikely to lead to safe deployment of this technology anytime soon. Estimates show that it could take 400 years for a fleet of 100 AVs to drive enough miles to prove that they are as safe as human drivers.Yet, data-sharing can be developed – as a technology, culture, and business – and allow for rapid generation and testing of the billions of possible scenarios that are needed to prove practicality and safety of an ADS – resulting in lower research
Khalkhali, MohsenKhalighi, Yaser
This document addresses measurement uncertainty and consumer risk as they relate to AS8879 thread inspection. It describes the rationale, theory and methodology used to generate the technical content of the AS5870. The document describes how to calculate measurement consumer risk. It documents all of the calculation methods which industry employs today to calculate what is commonly called measurement uncertainty (Appendices A, B, C, D, E and F). These, in turn, are used to calculate measurement uncertainty ratios which are required inputs to calculate measurement consumer risk. Users of this document can apply the information described herein for the evaluation of the capability of their measurements based on the measurement consumer risk. It involves the analysis of the measurement (product) distribution and biases of both the product and measurement system distributions. It protects the consumer from the worst case distribution results.
E-25 General Standards for Aerospace and Propulsion Systems
Items per page:
1 – 50 of 305