Browse Topic: Bacteria
A unique amplification chemistry was developed that allows highly specific isothermal detection of bacteria, and presumably eukaryotic cells, at sub-single-cell sensitivities. This is based on the ability to detect rRNA (ribosomal RNA) rather than DNA, as is typical. The difference is that rRNA is present in metabolizing cells at high copy number compared to the cognate DNA coding sequence. This formulation has the additional characteristics of simplified sample preparation, isothermal incubation conditions, and long-term stability in ambient conditions.
To provide a better tool for therapeutics, regenerative medicine, and biosensing, Tufts University bioengineers have created inkjet-printable silks containing enzymes, antibiotics, antibodies, nanoparticles, and growth factors. The purified silk protein, or fibroin, offers intrinsic strength and protective properties that make it well-suited for a range of biomedical and optoelectronic applications.
New research by mechanical engineers at Purdue University, West Lafayette, IN, aims at fighting bacterial biofilms that can foul medical devices, catheters, prosthetic valves, and other devices. Combating biofilms using antibiotics and toxic chemicals can lead to the growth of antibiotic-resistant strains.
A makeshift apparatus has been designed composed of a sealed, hydrophobic 2-propanol/SiO2 aerogel component to filter outside air particles. Following verification and assessment, the apparatus was crafted with a Buchner funnel. Aerogel matrices were tightly fitted into filter housings and secured in side-arm flasks, which were then equipped to a vacuum pump to pull air through the aerogel matrices. Aerogels, both with and without fiberglass reinforcement, were used to collect airborne particulates for one- and three-hour increments. An untreated negative control aerogel, employing air collection from a laminar hood, and a positive aerogel matrix were seeded with endospores that verified the extraction from the matrices.
Based on previously reported procedures for permeabilizing vegetative bacterial cells, and numerous trial-and-error attempts with bacterial endospores, a protocol was developed for effectively permeabilizing bacterial spores, which facilitated the applicability of fluorescent in situ hybridization (FISH) microscopy. Bacterial endospores were first purified from overgrown, sporulated suspensions of B. pumilus SAFR-032. Purified spores at a concentration of ≈10 million spores/mL then underwent proteinase-K treatment, in a solution of 468.5 μL of 100 mM Tris-HCl, 30 μL of 10% SDS, and 1.5 μL of 20 mg/mL proteinase-K for ten minutes at 35 ºC. Spores were then harvested by centrifugation (15,000 g for 15 minutes) and washed twice with sterile phosphate-buffered saline (PBS) solution. This washing process consisted of resuspending the spore pellets in 0.5 mL of PBS, vortexing momentarily, and harvesting again by centrifugation. Treated and washed spore pellets were then resuspended in 0.5 mL
Items per page:
50
1 – 50 of 167