Phantom is a computer code intended primarily for real-fluid turbomachinery problems. It is based on Corsair, an ideal-gas turbomachinery code, developed by the same authors, which evolved from the ROTOR codes from NASA Ames. Phantom is applicable to real and ideal fluids, both compressible and incompressible, flowing at subsonic, transonic, and supersonic speeds. It utilizes structured, overset, O- and H-type zonal grids to discretize flow fields and represent relative motions of components. Values on grid boundaries are updated at each time step by bilinear interpolation from adjacent grids. Inviscid fluxes are calculated to thirdorder spatial accuracy using Roe’s scheme. Viscous fluxes are calculated using second-order-accurate central differences. The code is second-order accurate in time. Turbulence is represented by a modified Baldwin-Lomax algebraic model. The code offers two options for determining properties of fluids: One is based on equations of state, thermodynamic