Browse Topic: Fuel additives

Items (361)
This information report covers two distinct projects to formulate Jet Refrence Fluids (JRF) for testing of material compatibility. The first effort began in 1978 and focused on producing a formulation (JRF-2) that simulated JP-4 and included composition with metallic ions that reproduced chalking of fuel tank sealants. This effort resulted in the preparation of AMS2629 that defined the formulation of JRF-2 (Type 1) and the same formulation with metallic ions (Type 2). The second effort began in 2002 and focused on preparing a JRF that simulated Jet A, JP-5 and JP-8. This effort went through multiple iterations, but eventually resulted in a JRF-3 formulation composed of Jet A plus military additives spiked to 25% aromatic content and high levels of sulfur experienced in the global fuel supply. Since the metallic ions added to JRF-2 demonstrated their ability to simulate a chalking reaction, chalking was not tested with the ions added to JRF-3. AMS2629 was changed multiple times to
AMS G9 Aerospace Sealing Committee
This SAE Aerospace Information Report (AIR) is intended as a source of comparative information and is subject to change to keep pace with experience and technical advances. This document describes currently used fuels and fuels which may be used in the future. Conventional gasoline and diesel fuels are intentionally omitted from this document.
AGE-3 Aircraft Ground Support Equipment Committee
Reducing carbon dioxide (greenhouse gas) is one of the most important drivers to promote biofuels. Fuel from biomass has the potential to reduce greenhouse gas emissions and can gradually reduce the dependence on fossil fuels. However, fuel properties can differ significantly from standard diesel fuel and this will affect exhaust emissions and environmental pollution. Diesel – ethanol fuel blends development and specification are currently driven by the engine technology, existing fossil fuel specification and availability of feedstock. Thus, the aims of this study to investigate the effects of fuel additives with diesel–ethanol fuel blend under steady-state conditions. In the present study, the additives were palm diesel, n-butanol, ethyl acetate and di-tert-butyl peroxide (DTBP). The ratio of conventional diesel fuel to ethanol fuel to fuel additive are 80:15:5 by volume of fuel blends. The comparative studies on the effects of fuel additives in the engine performance and phase
Theinnoi, KampanartSawatmongkhon, BoonlueWongchang, ThawatchaiSukjit, EkarongChuepeng, Sathaporn
The knock resistance of gasoline is a key factor to decrease the specific fuel consumption and CO2 emissions of modern turbocharged spark ignition engines. For this purpose, high RON and octane sensitivity (S) are needed. This study shows a relevant synergistic effect on RON and S when formulating a fuel with isooctane, cyclopentane and aromatics, the mixtures reaching RON levels well beyond the ones of individual components. The same is observed when measuring their knock resistance on a boosted single cylinder engine. The mixtures were also characterized on a rapid compression machine at 700 K and 850 K, a shock tube at 1000 K, an instrumented and an adapted CFR engine. The components responsible for the synergistic effects are thus identified. Furthermore, the correlations plotted between these experiments results disclose our current understanding on the origin of these synergistic effects. This study concludes that this synergistic effect encourages formulating highly paraffinic
Dauphin, RolandObiols, JeromeSerrano, DavidFenard, YannComandini, AndreaStarck, LaurieVanhove, GuillaumeChaumeix, Nabiha
Bio-fuels of the 2nd generation constitute a key approach to tackle both Greenhouse Gas (GHG) and air quality challenges associated with combustion emissions of the transport sector. Since these fuels are obtained of residual materials of the agricultural industry, well-to-tank CO2 emissions can be significantly lowered by a closed-cycle of formation and absorption of CO2. Furthermore, studies of bio-fuels have shown reduced formation of particulate matter on account of the fuels’ high oxygen content therefore addressing air quality issues. However, due to the high oxygen content and other physical parameters these fuels are expected to exhibit different ignition behaviour. Moreover, the question is whether there is a positive superimposition of the fuels ignition behaviour with the benefits of an alternative ignition system, such as a corona ignition. To shed light on these questions two oxygenic compounds, oxymethylene ether-1 (OME1) and dimethyl carbonate (DMC) have been studied
Langhorst, ThorstenToedter, OlafKoch, ThomasNiethammer, BenjaminArnold, UlrichSauer, Jörg
The Nitrous Oxide Ethylene-Ethane (NEE) engine uses nitrous oxide as an autogenously pressurizing oxidizer, and a mixture of ethane and ethylene is used in the same manner as fuel. Initially, the ethane and ethylene mixture has the same vapor pressure as the nitrous oxide. By using the autogenous pressurization capabilities of these propellants, instead of an additional pressurization system, greater system simplicity and reliability can be attained. The NEE can obtain a specific impulse of 320 s, making it the highest-performing, non-toxic, storable bipropellant rocket propulsion system in existence at the time of this reporting.
Items per page:
1 – 50 of 361