Browse Topic: Neural networks

Items (391)
Abstract A valuable quantity for analyzing the lateral dynamics of road vehicles is the side-slip angle, that is, the angle between the vehicle’s longitudinal axis and its speed direction. A reliable real-time side-slip angle value enables several features, such as stability controls, identification of understeer and oversteer conditions, estimation of lateral forces during cornering, or tire grip and wear estimation. Since the direct measurement of this variable can only be done with complex and expensive devices, it is worth trying to estimate it through virtual sensors based on mathematical models. This article illustrates a methodology for real-time on-board estimation of the side-slip angle through a machine learning model (SSE—side-slip estimator). It exploits a recurrent neural network trained and tested via on-road experimental data acquisition. In particular, the machine learning model only uses input signals from a standard road car sensor configuration. The model
Giuliacci, Tiziano AlbertoBallesio, StefanoFainello, MarcoMair, UlrichKing, Julian
Abstract In recent years, demands of flat wipers have rapidly increased in the vehicle industry due to their simpler structure compared to the conventional wipers. Procedures for evaluating the appropriate metallic flexor geometry, which is one of the major components of the flat wiper, were proposed in the authors’ previous study. However, the computational cost of the aforementioned procedures seems to be unaffordable to the industry. The discrete Winkler model regarding the flexor as the Euler–Bernoulli beam is established as the mathematical model in this study to simulate a flexor compressed against a surface at various wiping angles. The deflection of the beam is solved using a finite difference method, and the calculated contact pressure distributions agree fairly with those based on the corresponding finite element model. Flexor designs are paired with various windshield surfaces to accumulate a sufficiently large simulation database based on the mathematical model. An
Chu, Yi-TzuHuang, Ting-ChuanLiao, Kuo-Chi
Items per page:
1 – 50 of 391