Browse Topic: Level 2 (Partial driving automation)

Items (39)
This document describes machine-to-machine (M2M) communication to enable cooperation between two or more participating entities or communication devices possessed or controlled by those entities. The cooperation supports or enables performance of the dynamic driving task (DDT) for a subject vehicle with driving automation feature(s) engaged. Other participants may include other vehicles with driving automation feature(s) engaged, shared road users (e.g., drivers of manually operated vehicles or pedestrians or cyclists carrying personal devices), or road operators (e.g., those who maintain or operate traffic signals or workzones). Cooperative driving automation (CDA) aims to improve the safety and flow of traffic and/or facilitate road operations by supporting the movement of multiple vehicles in proximity to one another. This is accomplished, for example, by sharing information that can be used to influence (directly or indirectly) DDT performance by one or more nearby road users
Cooperative Driving Automation(CDA) Committee
This document describes [motor] vehicle driving automation systems that perform part or all of the dynamic driving task (DDT) on a sustained basis. It provides a taxonomy with detailed definitions for six levels of driving automation, ranging from no driving automation (Level 0) to full driving automation (Level 5), in the context of [motor] vehicles (hereafter also referred to as “vehicle” or “vehicles”) and their operation on roadways: Level 0: No Driving Automation Level 1: Driver Assistance Level 2: Partial Driving Automation Level 3: Conditional Driving Automation Level 4: High Driving Automation Level 5: Full Driving Automation These level definitions, along with additional supporting terms and definitions provided herein, can be used to describe the full range of driving automation features equipped on [motor] vehicles in a functionally consistent and coherent manner. “On-road” refers to publicly accessible roadways (including parking areas and private campuses that permit
On-Road Automated Driving (ORAD) committee
This document describes machine-to-machine (M2M) communication to enable cooperation between two or more participating entities or communication devices possessed or controlled by those entities. The cooperation supports or enables performance of the dynamic driving task (DDT) for a subject vehicle with driving automation feature(s) engaged. Other participants may include other vehicles with driving automation feature(s) engaged, shared road users (e.g., drivers of manually operated vehicles or pedestrians or cyclists carrying personal devices), or road operators (e.g., those who maintain or operate traffic signals or workzones). Cooperative driving automation (CDA) aims to improve the safety and flow of traffic and/or facilitate road operations by supporting the movement of multiple vehicles in proximity to one another. This is accomplished, for example, by sharing information that can be used to influence (directly or indirectly) DDT performance by one or more nearby road users
Cooperative Driving Automation(CDA) Committee
To promote the development of automated vehicles (AVs), large scale of field operational tests (FOTs) were carried out around the world. Applications of naturalistic driving data should base on correlative scenarios. However, most of the existing scenario typologies, aiming at advanced driving assistance system (ADAS) and extracting discontinuous fragments from driving process, are not suitable for AVs, which need to complete continuous driving tasks. In this paper, a systematic scenario-typology consisting of four layers (from top to bottom: trip, cluster, segment and process) was first proposed. A trip refers to the whole duration from starting at initial parking space to parking at final one. The basic units ‘Process’, during which the vehicle fulfils only one driving task, are classified into parking process, long-, middle- and short-time-driving-processes. A segment consists of two neighboring long-time-driving processes and a middle or/and short one between them. A cluster refers
Liu, LinZHU, XichanChen, MingyangMa, Zhixiong
Items per page:
1 – 39 of 39