Browse Topic: Measurements

Items (2,106)
USCAR-29
USCAR
This SAE Information Report has been prepared at the request of the SAE Road Vehicle Aerodynamics Forum Committee (RVAC), incorporating material from earlier revisions of the document first prepared by the Standards Committee on Cooling Flow Measurement (CFM).Although a great deal is already known about engine cooling, recent concern with fuel conservation has resulted in generally smaller air intakes whose shape and location are dictated primarily by low vehicle drag/high forward speed requirements. The new vehicle intake configurations make it more difficult to achieve adequate cooling under all conditions. They cause cooling flow velocity profiles to become distorted and underhood temperatures to be excessively high. Such problems make it necessary to achieve much better accuracy in measuring cooling flows.As the following descriptions show, each company or institution concerned with this problem has invested a lot of time and as a result gained considerable experience in developing
Road Vehicle Aerodynamics Forum Committee
The performance of a coaxial rotor hovering in-ground effect (IGE) is compared against the out-of-ground effect (OGE) condition to quantify the rotor-ground interaction and against an isolated rotor IGE at equivalent blade loading to quantify the rotor-rotor interaction. It is observed that the performance of the coaxial rotor improves when it hovers IGE. However, the rotor-rotor and rotor-ground interactions compete, which affects the performance of the coaxial rotor. This paper aims to quantitatively measure the aerodynamic interactions of the CCR in IGE by developing a theoretical framework based on momentum theory. This formulation introduced induced power factors to understand the aerodynamic interactions of a CCR operating IGE. The performance measurements show that the rotor-ground interaction in the CCR system behaved similarly to a single rotor operating in IGE conditions. The interactional effects significantly influence the individual rotors as the rotor-rotor interactions
Moore, ZacharySilwal, LokeshVijayaraj, AdityaRaghav, Vrishank
Items per page:
1 – 50 of 2106