Browse Topic: Failure modes and effects analysis (FMEA)

Items (1,222)
USCAR-29
USCAR
This information report provides general guidance for the design considerations, qualification in endurance, strength and fatigue of landing gear using composite components as principle structural elements. The information discussed herein includes the development and evaluation of design data considering: the potential for imbedded manufacturing defects, manufacturing process variations, the component operating environment, potential damage threats in service, rework and overhaul, and inspection processes. This AIR mainly discusses the use of thick composites for landing gear structural components. Considerations and recommendations provided in this AIR may therefore differ greatly from considerations and recommendations found in widely accepted composite design references such as CMH-17 and Advisory Circulars such as AC 20-107(B).
A-5B Gears, Struts and Couplings CommitteeNEW
AS 6413 and slash sheets /1 & /2 hold the main information for testing of battery packaging. This document holds further information and expansion of philosophy, clarification etc. surrounding the testing and industry needs.
G-27 Lithium Battery Packaging Performance
SAE CACRC has produced several standards, each representing the best-practice, recommended minimum training syllabus for the aforementioned target groups. The purpose of this document is to promote the use of these SAE standards, particularly for developing training programs for employee training, qualification in airlines and maintenance organizations, and as reference in regulatory guidance material. It summarizes, as a quick reference, the content of each training document and its relation to and interaction with other training documents. Thereby it allows users to select the appropriate training documents and syllabi to establish a comprehensive, sequential training program build-up customized to the specific needs of the aforementioned functions (see figure). This document does not intend to introduce new training content/syllabus.
AMS CACRC Commercial Aircraft Composite Repair Committee
This document provides an overview of the tests and issues related to testing that are unique to Electrohydrostatic Actuators (EHAs). An EHA incorporates a linear or rotary hydraulic actuator and a variable speed, reversible electric servomotor driving a fixed displacement hydraulic pump for actuator control, and associated power drive electronics. The tests and issues documented are not necessarily all-inclusive. This document discusses both, the tests applicable to EHAs and the test methodologies to accomplish the test objectives. This document also lists tests that are not unique to EHAs, but are still applicable to EHAs. In these instances a discussion of such tests is not contained in this document, and as applicable, the reader may reference ARP1281 (Actuators: Aircraft Flight Controls, Power Operated, Hydraulic, General Specification For), which addresses test issues applicable to electrohydraulic flight control servoactuators. In the discussion of the tests and test
A-6B2 Electrohydrostatic Actuation Committee
As per Committee/Henry E. Harschburger recommendations
A-6B1 Hydraulic Servo Actuation Committee
This SAE Recommended Practice establishes uniform test procedures for friction based parking brake components used in conjunction with hydraulic service braked vehicles with a gross vehicle weight rating greater than 4500 kg (10 000 lb). The components covered in this document are the primary actuation and the foundation park brake. Various peripheral devices such as application dashboard switches or indicators are not included. These test procedures include the following: a Brake Related Tests 1 Brake Functional Performance 2 Brake Dynamic Torque Performance 3 Brake Corrosion Resistance 4 Brake Endurance with Torque 5 Brake Endurance without Torque 6 Vibration Resistance 7 Brake Ultimate Static Load 8 Brake Lining Wear Adjuster Function b Actuation Related Tests 1 Mechanical Actuator Functional Performance 2 Mechanical Actuator Endurance 3 Mechanical Actuator Quick Release 4 Mechanical Actuator Ultimate Load 5 Spring Apply Actuator Functional Performance 6 Spring Apply Actuator
Truck and Bus Hydraulic Brake Committee
Items per page:
1 – 50 of 1222